BACCALAURÉAT SESSION 2019

Coefficient : 5
Durée : 4h

MATHÉMATIQUES

SÉRIE C

Cette épreuve comporte trois (03) pages numérotées 1/3, 2/3 et 3/3.

Chaque candidat recevra deux (02) feuilles de papier millimétré.

Tout modèle de calculatrice scientifique est autorisé.

Les tables trigonométriques, logarithmiques et les règles à calculs sont aussi autorisées.

EXERCICE 1

L'unité de longueur est le centimètre.

Dans le plan orienté, on considère un carré ABCD de centre K tel que AB = 3. On note E le milieu du segment [BC] et G le barycentre des points pondérés (A, 4), (B, -1) et (D, -1).

- 1. a) Démontre que A est le milieu du segment [KG].
 - b) Justifie que : $GB^2 = \frac{45}{2}$.
 - c) Justifie que : GB = GD.
 - d) Détermine et construis l'ensemble (Γ_1) des points M du plan tels que : $4MA^2 MB^2 MD^2 = 9$.
- 2. *a*) Justifie que : AE = $\frac{3\sqrt{5}}{2}$.
 - b) Démontre que pour tout point M du plan : $3MA^2 - 2MB^2 - MD^2 = -27 + 4\overrightarrow{AM} \cdot \overrightarrow{AE}$.
 - c) Détermine et construis l'ensemble (Γ_2) des points M du plan tels que : $3MA^2 2MB^2 MD^2 = 63$.

EXERCICE 2.

On considère un entier naturel m dont l'écriture dans le système décimal est \overline{abc} . (On rappelle que : $m = 10^2 a + 10 b + c$)

Partie A

- 1. Écris l'entier naturel m en base 2 dans le cas où : a = 1 ; b = 2 et c = 1.
- 2. On suppose que : $m \equiv 0$ [27].
 - i) Démontre que : $10^3 a + 10\overline{bc} \equiv 0$ [27].
 - ii) Déduis-en que : $10 \overline{bc} + a \equiv 0$ [27].
 - iii) Justifie alors que l'entier \overline{bca} est divisible par 27.

Partie B

Dans cette partie on suppose que : a > c.

On pose: $p = \overline{cha}$; u = a - c et d = m - p.

1. Justifie que : d = 99u.

- 2. Déduis de la question précédente que l'entier naturel d ne peut être le carré d'un entier naturel.
- 3. On suppose que : b = a + c.
 - i) Justifie que : m = 11(10a + c).
 - ii) Déduis-en que m et d ne sont pas premiers entre eux.
- 4. On suppose que : a = b + c.
 - i) Justifie que : $d = 3^2 \times 11b$.
 - ii) Justifie que : m = 110b + 101c.
 - iii) Démontre que les entiers naturels m qui sont premiers avec d sont ceux qui vérifient à la fois : $b\neq 0$,
 - $c \neq 0$, b+c n'est pas divisible par 3; b et c sont premiers entre eux.
 - iv) Déduis des questions précédentes, tous les entiers naturels m premiers avec d.

PROBLÈME

Le plan est muni d'un repère orthonormé (O, I, J). L'unité graphique est le centimètre.

Pour tout entier naturel
$$n$$
 non nul, on considère les fonctions f_n et F_n continues sur \mathbb{R} et définies par :
$$f_n(x) = \frac{x^{2n}}{\sqrt{1+x^2}} \quad \text{et} \quad F_n(x) = \int_0^x \frac{t^{2n}}{\sqrt{1+t^2}} dt.$$

On note (\mathcal{C}_n) la courbe représentative de la fonction F_n dans le repère (O, I, J).

On se propose dans ce problème de donner, pour tout entier naturel n non nul, l'allure de la courbe (\mathcal{C}_n) .

Partie A

On considère la fonction f définie sur \mathbb{R} par : $f(x) = \ln(x + \sqrt{1 + x^2})$.

On désigne par (\mathscr{C}) la courbe représentative de la fonction f dans le plan muni du repère (O, I, J).

- 1. Démontre que f est une fonction impaire.
- 2. a) Calcule la limite de f(x) puis celle de $\frac{f(x)}{x}$ quand x tend vers $+\infty$.
 - b) Donne une interprétation graphique des résultats de la question précédente.
- 3. On admet que f est dérivable sur \mathbb{R} .
 - a) Justifie que : $\forall x \in \mathbb{R}, f'(x) = \frac{1}{\sqrt{1+x^2}}$.
 - b) Détermine le sens de variation de f sur $[0; +\infty[$.
 - c) Dresse le tableau de variation de $f \sup [0; +\infty[$.
- 4. Détermine une équation de la tangente (Δ) à (ℰ) au point d'abscisse 0.
- 5. On note g la fonction dérivable sur R et définie par :

$$g(x) = -x + \ln(x + \sqrt{1 + x^2}).$$

- a) Détermine le sens de variation de g sur \mathbb{R} .
- b) Détermine les positions relatives de (\mathscr{C}) et (Δ) . (On pourra calculer g(0)).
- 6. Construis la courbe (Ε) et la droite (Δ) dans le plan muni du repère (O, I, J).
- 7. On note A l'aire en cm² de la partie du plan limitée par la courbe (8), la droite (OI) et les droites d'équations x = 0 et x = 1.

Calcule A à l'aide d'une intégration par parties.

Partie B

- a) Justifie que F_n est définie sur \mathbb{R} .
 - b) Démontre que F_n est une fonction impaire.
 - c) Étudie le sens de variation de F_n sur $[0; +\infty[$.
- 2. Soit (I_n) la suite numérique définie par :

$$I_0 = \ln(1 + \sqrt{2}) \text{ et } \forall n \in \mathbb{N}^*, I_n = \int_0^1 \frac{t^{2n}}{\sqrt{1 + t^2}} dt.$$

- a) Démontre que : $\forall n \in \mathbb{N}, I_n \ge 0$.
- b) Démontre que la suite (I_n) est décroissante.
- c) Démontre que la suite (In) est convergente.
- (On ne demande pas de calculer la limite de (I_n) .
- d) Vérifie que pour tout entier naturel n non nul et pour tout nombre réel t positif, on a : $t^{2n} \sqrt{1+t^2} = \frac{t^{2n}}{\sqrt{1+t^2}} + \frac{t^{2n+2}}{\sqrt{1+t^2}}$

$$t^{2n}\sqrt{1+t^2} = \frac{t^{2n}}{\sqrt{1+t^2}} + \frac{t^{2n+2}}{\sqrt{1+t^2}}$$

e) A l'aide d'une intégration par parties, justifie que :

$$\forall n \in \mathbb{N}^*, \quad I_{n+1} = \frac{\sqrt{2}}{2n+2} - \frac{2n+1}{2n+2}I_n.$$

On remarquera que pour tout nombre réel t, $\frac{t^{2n+2}}{\sqrt{1+t^2}} = t^{2n+1} \times \frac{t}{\sqrt{1+t^2}}$

On admettra que :
$$I_1 = \frac{\sqrt{2}}{2} - \frac{1}{2} I_0$$
.

- f) Calcule I₁ et I₂.
- a) Démontre que : $\forall x \in \mathbb{R}, F_n(x) = I_n + \int_1^x \frac{t^{2n}}{\sqrt{1+t^2}} dt$.
 - b) Démontre que :

$$\forall t \ge 1, \frac{1}{\sqrt{2}} \times \frac{1}{t} \le \frac{1}{\sqrt{1+t^2}}.$$

$$\forall n \in \mathbb{N}^* \text{ et } \forall x \ge 1, \frac{1}{2\sqrt{2}} \times \frac{1}{n} (x^{2n} - 1) \le \int_1^x \frac{t^{2n}}{\sqrt{1+t^2}} dt.$$

- c) Déduis-en la limite de $F_n(x)$ lorsque x tend vers $+\infty$.
- d) Démontre que, pour tout entier naturel non nul n, (\mathcal{C}_n) admet une branche parabolique de direction celle de la droite (OJ) en +∞.
- e) Construis la courbe (\$\mathbb{C}_2\$) dans le plan muni du repère (O, I, J).