

INSTRUCTIONS GENERALES

- L'utilisation de la calculatrice non programmable est autorisée;
- ✓ Le candidat peut traiter les exercices de l'épreuve suivant l'ordre qui lui convient ;
- ✓ L'utilisation de la couleur rouge lors de la rédaction des solutions est à éviter.

COMPOSANTES DU SUJET

L'épreuve est composée de trois exercices et un problème indépendants entre eux et répartis suivant les domaines comme suit :

Exercice 1	Géométrie dans l'espace	3 points
Exercice 2	Nombres complexes	3 points
Exercice 3	Calcul des probabilités	3 points
Problème	Etude de fonctions numériques, calcul intégral et suites numériques	11 points

- \checkmark On désigne par \overline{z} le conjugué du nombre complexe z et par |z| son module
- ✓ In désigne la fonction logarithme népérien

0.25

0.5

0.5

0.5

0.5

0.25

0.5

0.5

0.5

0.5

Exercice 1 (3points):

Dans l'espace rapporté à un repère orthonormé direct $(O, \vec{i}, \vec{j}, \vec{k})$, on considère les points A(0,1,4), B(2,1,2), C(2,5,0) et $\Omega(3,4,4)$.

- 1) a) Montrer que $\overrightarrow{AB} \wedge \overrightarrow{AC} = 4(2\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k})$
 - b) En déduire l'aire du triangle ABC et la distance d(B,(AC))
- 2) Soit D le milieu du segment [AC]
- 0.25 a) Vérifier que $\overline{D\Omega} = \frac{1}{4} \left(\overline{AB} \wedge \overline{AC} \right)$
 - b) En déduire que $d(\Omega,(ABC))=3$.
 - 3) Soit (S) la sphère d'équation $x^2 + y^2 + z^2 6x 8y 8z + 32 = 0$
- 0.5 a) Déterminer le centre et le rayon de la sphère (S)
 - b) Montrer que le plan (ABC) est tangent à la sphère (S) en un point que l'on déterminera.
 - 4) Soient (Q₁) et (Q₂) les deux plans parallèles à (ABC) tels que chacun d'eux coupe (S) suivant un cercle de rayon √5
 - Déterminer une équation cartésienne pour chacun des deux plans (Q_1) et (Q_2)

Exercice 2 (3points):

Dans le plan complexe rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les points A, B, C et D d'affixes respectives $a = \sqrt{2} + i\sqrt{2}$, $b = 1 + \sqrt{2} + i$, $c = \overline{b}$ et d = 2i

- 1) Écrire le nombre complexe a sous forme trigonométrique.
- 0.25 | 2) a) Vérifier que b-d=c
 - b) Montrer que $(\sqrt{2}+1)(b-a)=b-d$ et déduire que les points A, B et D sont alignés.
- 0.25 3) a) Vérifier que ac = 2b
 - b) En déduire que $2arg(b) \equiv \frac{\pi}{4} [2\pi]$
 - 4) Soit R la rotation de centre O et d'angle $\frac{\pi}{4}$ et qui transforme chaque point M du plan d'affixe z en un point M' d'affixe z'.
- 0.25 a) Montrer que $z' = \frac{1}{2}az$
 - b) En déduire que R(C) = B et que R(A) = D
 - c) Montrer que $\frac{b-a}{c-a} = \left(\frac{\sqrt{2}-1}{2}\right)a$, puis déduire une mesure de l'angle $(\overline{AC}, \overline{AB})$

0.5

0.5

NS 22F

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2023 - الموضوع - مادة: الرياضيات- مملك علوم الحياة والأرض ومملك الطوم الفيزيائية (خيار فرنسية)

٠

Exercice 3 (3points):

Une urne U_1 contient six boules portant les nombres : 0; 0; 1; 1; 1; 2 et une urne U_2 contient cinq boules portant les nombres: 1; 1; 1; 2; 2.

On suppose que les boules des deux urnes sont indiscernables au toucher.

On considère l'expérience aléatoire suivante :

« On tire une boule de l'urne U_1 et on note le nombre a qu'elle porte, puis on la met dans l'urne U_2 , ensuite on tire une boule de l'urne U_2 et on note le nombre b qu'elle porte ».

On considère les événements suivants :

A: "la boule tirée de l'urne U_1 porte le nombre 1"

B: "le produit ab est égal à 2"

- 0.5 1) a) Calculer p(A); la probabilité de l'événement A.
 - b) Montrer que $p(B) = \frac{1}{A}$ (On peut utiliser l'arbre des possibilités)
- 0.75 2) Calculer p(A/B); probabilité de l'événement A sachant que l'événement B est réalisé.
 - 3) Soit X la variable aléatoire qui associe à chaque résultat de l'expérience, le produit ab
- 0.25 a) Montrer que $p(X = 0) = \frac{1}{3}$
 - b) Donner la loi de probabilité de X (Remarquer que les valeurs prises par X sont : 0 ; 1 ; 2 et 4)
- 0.5 c) On considère les événements :

M: "le produit ab est pair non nul" et N: "le produit ab est égal à 1 "

Montrer que les événements M et N sont équiprobables.

Problème (11points):

On considère la fonction numérique f définie sur $]0,+\infty[$ par $f(x)=2-\frac{2}{x}+(1-\ln x)^2$

Soit (C_f) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) (unité : 1 cm).

- 1) a) Vérifier que pour tout $x \in]0,+\infty[:f(x)=\frac{3x-2-2x\ln x+x(\ln x)^2}{x}]$
 - b) Montrer que $\lim_{x\to 0^+} x(\ln x)^2 = 0$ et que $\lim_{x\to +\infty} \frac{(\ln x)^2}{x} = 0$ (On peut poser : $t = \sqrt{x}$)
 - c) Déduire que $\lim_{x\to 0^+} f(x) = -\infty$, puis donner une interprétation géométrique du résultat.
 - d) Calculer $\lim_{x\to +\infty} f(x)$, puis montrer que la courbe (C_f) admet une branche parabolique de direction l'axe des abscisses au voisinage de $+\infty$
- 2) Montrer que pour tout $x \in]0, +\infty[: f'(x) = \frac{2(1-x+x\ln x)}{x^2}$

0.25

0.5

0.5

0.75

0.5

1

0.5

0.5

1.5

0.5

1

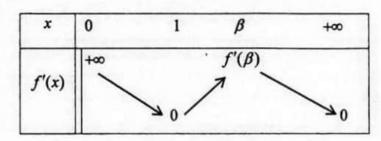
0.75

0.5

0.5

0.75

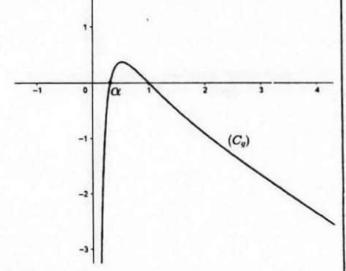
3) En exploitant le tableau de variation ci-dessous, de la fonction dérivée f' de f sur $]0,+\infty[$:



(On donne $\beta \simeq 4.9$)

- 0.5 a) Prouver que f est strictement croissante sur |0,+∞ | puis dresser le tableau de variations de f
 - b) Donner le tableau de signe de la dérivée seconde f'' de la fonction f sur $]0,+\infty[$
 - c) Déduire la concavité de la courbe (C_f) en précisant les abscisses de ses deux points d'inflexion.
 - 4) La courbe (C_g) ci-contre est la représentation graphique de la fonction $g: x \mapsto f(x) x$ et qui s'annule en α et 1 $(\alpha = 0,3)$

Soit (Δ) la droite d'équation y = x.



- a) A partir de la courbe (C_g) , déterminer le signe de la fonction g sur $]0,+\infty[$
- b) Déduire que la droite (Δ) est en dessous de (C_f) sur l'intervalle [α ,1] et au-dessus de (C_f) sur les intervalles $]0,\alpha]$ et $[1,+\infty[$
- 5) Construire la courbe (C_f) et la droite (Δ) dans le repère (O, \vec{i}, \vec{j}) . (On prend : $\alpha \approx 0.3$, $\beta \approx 4.9$ et $f(\beta) \approx 1.9$)
- 6) a) Vérifier que la fonction $x \mapsto 2x x \ln x$ est une primitive de la fonction $x \mapsto 1 \ln x$ sur $[\alpha, 1]$
 - b) En utilisant une intégration par parties, montrer que $\int_{\alpha}^{1} (1 \ln x)^2 dx = 5(1 \alpha) + \alpha (4 \ln \alpha) \ln \alpha$
 - c) Déduire en fonction de α l'aire de la partie du plan délimitée par la courbe (C_f) , l'axe des abscisses et les droites d'équations $x = \alpha$ et x = 1
- 7) Soit la suite numérique (u_n) définie par $u_0 \in]\alpha, 1[$ et la relation $u_{n+1} = f(u_n)$, pour tout $n \in \mathbb{N}$
 - a) Montrer par récurrence que $\alpha < u_n < 1$, pour tout n de $\mathbb N$
 - b) Montrer que la suite (u_n) est croissante. (on peut utiliser la question 4) b)
- c) En déduire que la suite (u_n) est convergente et calculer sa limite.