

Concours d'entrée en 1^{ère} année des années préparatoires de l'ENSAM Casablanca-Meknès

SERIES : SCIENCES EXPERIMENTALES ET BRANCHES TECHNIQUES

Epreuve de physique

Durée: 2h20min Le 2 Août 2014

- L'épreuve contient 4 pages. Elle est composée de deux parties indépendantes : une partie rédaction et une partie QCM.
- Répondre dans la feuille « fiche de réponse ».
- L'usage de la calculatrice programmable est strictement interdit.

PARTIE REDACTION

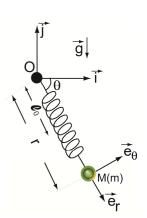
Physique I: (Mécanique) (Les parties A et B sont indépendantes)

Partie A

Le ressort étudié a une masse négligeable, une longueur à vide l_0 et une constante de raideur k. Une de ses extrémités est accrochée à une pointe O liée à un mur. Dans l'autre extrémité est attaché un point matériel M de masse m=5kg. Le système (Masse m + Ressort) tourne librement dans un plan vertical autour de O. Le mouvement peut être repéré dans les deux référentiels suivants:

- $\Re(O,\vec{i},\vec{j})$ un référentiel fixe considéré galiléen et lié au mur,
- \mathbb{R}_s un référentiel tournant muni de la base polaire $\left(O, \vec{e}_r, \vec{e}_\theta\right)$ où M est repéré par ses coordonnées polaires r et θ .

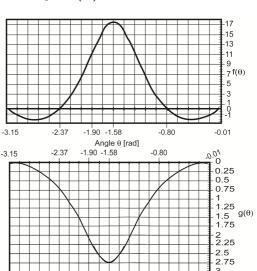
L'angle $\theta(\vec{i}, \vec{e_r})$ est compté positivement dans le sens trigonométrique. A l'équilibre, le système (Masse m + Ressort) est stabilisé à une position verticale du faite de la pesanteur terrestre. On prendra $g=9.81 \,\mathrm{m/s^2}$ et on négligera les frottements de l'air.



- 1. Exprimer les différentes forces s'exerçant sur la masse M.
- 2. Lorsque le système est à l'équilibre, exprimer la distance à l'origine $r_{\rm e}$ du point M.
- 3. Exprimer le vecteur j dans la base polaire.

Le point M est maintenant lâché sans vitesse initiale et sans imposer de compression au ressort avec un angle $\theta = 0$ (horizontalement). Un système de capteur permet le suivi temporel de la position du point M pendant un laps de temps. A partir de cette acquisition de données, les deux fonctions suivantes sont calculées: $g(\theta) = r - l_0$ et $f(\theta) = r\dot{\theta}^2 - \ddot{r}$.

- 5. Donner l'expression de l'accélération $\overrightarrow{\gamma}(M/\mathbb{R})$.
- 6. En projetant sur la base polaire l'équation vectorielle issue de l'application du principe fondamental de la dynamique sur le point M, donner les deux équations différentielles en r et en θ .
- 7. Ré-exprimer l'équation différentielle contenant le terme \ddot{r} à l'aide des fonctions $f(\theta)$ et $g(\theta)$.
- **8.** A partir des deux figures ci-contre et de l'équation obtenue en 7, déterminer la valeur moyenne de (k/m).
- 9. D'après les questions précédentes calculer k et l_0 . (On prend $r_e = 298cm$)

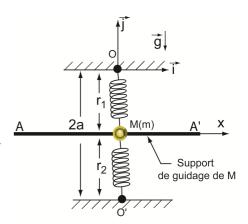


Partie B

Supposant maintenant que la masse M(m) est reliée à deux ressorts, identiques à celui étudié précédemment dans la partie A, placés verticalement (figure cicontre). Les extrémités O et O' des ressorts sont fixées à des points fixes et distants de 2a, avec $a > l_0$. A l'équilibre, on désignera par r_1 la longueur du ressort OM et par r_2 celle du ressort OM.

10. A l'équilibre, calculer les longueurs r_1 et r_2 des ressorts en fonction de m, g, a et k.

Considérant maintenant que la masse M(m) peut coulisser sur un dispositif convenable assurant un guidage parfait (sans frottement) suivant l'axe AA'. On suppose que l'on peut faire l'approximation $r_1 = r_2 = a$. On déplace horizontalement la masse m avec la distance δ à partir de sa position d'équilibre et on lâche le système sans vitesse initiale.

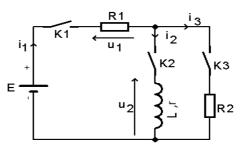


- 11. Etablir l'équation différentielle du mouvement de la masse m.
- 12. Dans le cas où $\delta \ll a$, déduire l'expression de la période T du mouvement de la masse m.

Physique II (Electricité):

On considère le circuit représenté sur le schéma ci-dessous, il comporte :

- Un générateur de tension continue E.
- Une bobine d'inductance L et de résistance interne r.
- Deux conducteurs ohmiques $R_1 = 10\Omega$ et $R_2 = 10\Omega$.
- Trois interrupteurs K₁, K₂ et K₃.

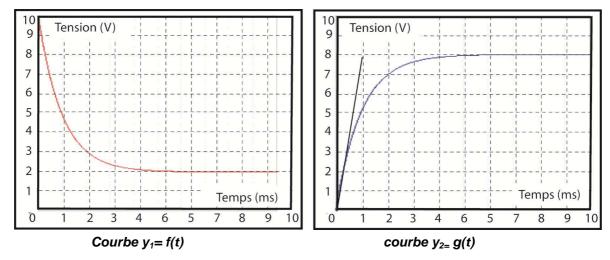


Toutes les parties sont indépendantes et les valeurs des composants peuvent changer d'une partie à l'autre.

Partie A: K1 et K2 sont fermés et K3 est ouvert.

On note t=0 le temps où les interrupteurs basculent vers leurs positions respectives.

À cet instant, on procède à l'enregistrement de la tension aux bornes de la résistance R1 et de celle aux bornes de la bobine L. On obtient les courbes $y_1 = f(t)$ et $y_2 = g(t)$.



- 1. Identifier la grandeur \mathbf{y}_1 (tension aux bornes de la résistance ou tension aux bornes de la bobine).
- 2. Donner la valeur de la force électromotrice E du générateur de tension.

Le circuit étudié peut être caractérisé par sa constante de temps τ . Pour un circuit (R, L), on pose : $\tau = \frac{L}{R}$

- 3. Donner l'expression de R en fonction de R1 et r.
- **4.** Donner l'expression de $u_1(t)$ en fonction de E, R1, r et τ .

- 5. On admet que : $i_1(t) = A\left(1 e^{-\frac{t}{\tau}}\right)$. Calculer la valeur de A.
- 7. Donner la valeur de τ déterminée graphiquement.
- En déduire la valeur de L.
- Calculer l'énergie emmagasinée par la bobine quand le régime permanent est établi.

Partie B: K1, K2 et K3 sont fermés.

Dans cette partie, on note t=0 le temps où les interrupteurs basculent vers leurs positions respectives. On remplace L par une bobine d'inductance L1=10mH et de résistance interne négligeable.

- **10.** A t=0⁺, calculer l'intensité du courant i₁.
- 11. Etablir l'équation différentielle qui relie l'intensité du courant i₂(t) et sa dérivée en fonction de E, R1, R2 et L1.
- 12. Résoudre cette équation différentielle en supposant que l'intensité initiale du courant est $i_2(0)=0$.
- 13. Donner l'expression en fonction du temps de la tension u₁.
- **14.** Calculer les intensités i₁ et i₃ en régime permanant.
- 15. Calculer le temps de montée de l'intensité du courant i₂(t), celui-ci étant le temps nécessaire pour passer de 10% à 90%.
- 16. Calculer la résistance équivalente vue par la source de tension en régime permanant.

Partie C:

Dans cette partie, les interrupteurs K1, K2 et K3 étaient fermés pendant un long intervalle de temps. A l'instant t=0 on garde K2 et K3 fermés et on ouvre K1.

- 17. Etablir l'équation différentielle qui relie l'intensité du courant i₂ et sa dérivée.
- 18. Etablir en fonction du temps, l'expression de l'intensité du courant i₂.

PARTIE QUESTIONS A CHOIX MULTIPLES

Important: Cette épreuve est un Q.C.M (questions à choix multiples). Pour chaque question, on vous propose 4 réponses. Cocher la réponse juste par une croix dans la case correspondante.

Barème: Une réponse juste : + 2, Pas de réponse : 0, Une réponse fausse ou plus d'une seule réponse :-1

- Une balle A est lancée, sans vitesse initiale, à partir du toit d'un immeuble de hauteur H. En même temps, une balle B est lancée avec une vitesse initiale v_o du bas vers le haut du bâtiment. Quand A et B rentrent en collision, on a $v_a=2v_b$. Supposons que la collision se produit à une hauteur h et à l'instant t_c .
- 1.1 La vitesse initiale de la balle B est :

a.
$$v_o = \sqrt{g\left(H + \frac{3gh}{2}\right)}$$
 b. $v_o = \sqrt{\frac{gH + 3gh}{2}}$

b.
$$v_o = \sqrt{\frac{gH + 3gh}{2}}$$

$$\mathbf{c.} \ v_o = \sqrt{H - \frac{3gh}{2}}$$

$$\mathbf{d.} \ v_o = \sqrt{gH + \frac{2h}{H}}$$

1.2 Le temps en lequel la collision entre les deux balles se produit est:

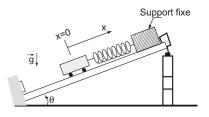
a.
$$t_c = \frac{2}{3}g$$

b.
$$t_c = \frac{2}{3}v_0g$$

$$t_c = \frac{2v_0}{3g}$$

d.
$$t_c = \frac{v_0}{3g}$$

Soit un ressort de longueur à vide l_0 et de constante de raideur k. L'une des extrémités du ressort est fixée et l'autre est liée à un chariot de masse m qui se déplace sans frottement sur un plan incliné d'un angle θ par rapport à l'horizontale. A cause du chariot, le ressort s'étire légèrement tel que $l>l_0$.



2.1 A l'équilibre, l'expression de l est:

a.
$$l = l_0 + \frac{mg\sin\theta}{k}$$
 b. $l = \frac{mg\cos\theta}{k}$

$$\mathbf{b.} \ l = \frac{mg\cos\theta}{k}$$

$$\mathbf{c.}\ l = l_0 + mgk\cos\theta$$

$$\mathbf{d.} \ l = mgl_0 + k\sin\theta$$

2.2 Maintenant, on déplace le chariot le long de la rampe de façon à comprimer le ressort à partir de la position d'équilibre jusqu'à une distance x_0 de l'origine. Ensuite, on le relâche (On prendra l'origine x=0 la position du chariot à l'équilibre). Donner la vitesse du chariot lorsqu'il revient à sa position d'équilibre?

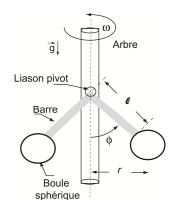
a.
$$\sqrt{gx_0\sin\theta+\frac{k}{2m}x_0^2}$$

b.
$$\sqrt{mg\sin\theta + \frac{k}{2m}x^2}$$

a.
$$\sqrt{gx_0\sin\theta + \frac{k}{2m}x_0^2}$$
 b. $\sqrt{mg\sin\theta + \frac{k}{2m}x^2}$ **c.** $\sqrt{2gx_0\sin\theta + \frac{k}{m}x_0^2}$ **d.** $\sqrt{g\sin\theta + \frac{k}{2m}x_0^2}$

d.
$$\sqrt{g\sin\theta + \frac{k}{2m}x_0^2}$$

3. La figure ci-contre est un régulateur à boules de James Watt. C'est un système permettant de réguler la vitesse de rotation d'une machine à vapeur. Il est constitué de 2 sphères, chacune est de masse m et est attachée à un bras rigide de masse négligeable et de longueur ℓ , lié à un arbre rotatif, et libre de pivoter vers le bas et vers le haut.



- **3.1.** Le système est en marche, les boules sphériques décrivent un cercle de rayon r autour de l'arbre de rotation. Quelle est l'accélération des boules ?
 - **a.** $\omega l^2 \cos \varphi$
- **b.** $\omega^2 l \sin \varphi$
- c. $\omega l \sin \varphi$
- **3.2.** Quelle est la valeur minimale ω_{\min} de la vitesse angulaire pour que le dispositif fonctionne correctement?
 - a. $\sqrt{gl\sin\varphi}$

d. $\frac{l}{g}\cos\varphi$

3.3. Le rayon de la trajectoire des sphères est :

$$\mathbf{a.}\sqrt{l\left(1-\frac{mg^2}{l^2}\cos\varphi\right)}$$

$$\mathbf{b.} \sqrt{l \left(1 - \frac{g^2}{l^2} \cos \boldsymbol{\varphi}\right)}$$

c.
$$\sqrt{l\left(1-\frac{g^2}{l^2\omega^4}\right)}$$

$$\mathbf{d.} \sqrt{l^2 - \frac{g^2}{\omega^4}}$$

- 4. En alternative, un voltmètre mesure :
 - a. la valeur maximale de la tension.
 - **b.** la valeur minimale de la tension.
- 5. L'impédance Z d'un dipôle :
 - a. est indépendante de la fréquence N de la tension alternative.
 - **b.** augmente avec cette fréquence.
- **6.** Une bobine se comporte comme un conducteur ohmique :
 - a. lorsque le courant qui la traverse change de valeur.
 - **b.** lorsque la tension entre ces bornes change de valeur.
- 7. La tension ne peut pas présenter de discontinuité :
 - a. aux bornes d'un condensateur.
 - **b.** aux bornes d'une bobine.
- 8. Dans un régime apériodique d'un circuit RLC, le courant :

- c. la valeur efficace de la tension.
- d. la valeur instantanée de la tension.
- c. diminue avec cette fréquence.
- d. varie avec cette fréquence.
- c. en régime permanent.
- **d.** en régime variable.
- c. aux bornes d'un conducteur ohmique.
- d. aux bornes d'un interrupteur.
- - a. passe par un maximum puis converge vers une valeur finale.
 - b. converge de façon monotone vers sa valeur finale.
- c. oscille en convergeant vers une valeur finale.
- d. oscille en divergeant.
- 9. La constante d'amortissement d'un circuit RLC est :
 - a. L/R
 - **b.** 2L/R

- c. LR
- **d.** L/2R
- 10. Quelle est la résistance équivalente du dipôle AB du montage suivant :

