

Epreuves du mercredi 3 mai 2023

Ce livret comporte les énoncés des sujets et 6 feuilles « document réponse ».

Vous devez traiter:

- Le sujet de Mathématiques QCM ET
- 2 sujets au choix parmi les spécialités: Mathématiques, Physique-Chimie, Sciences de la Vie et de la Terre/Biologie-écologie, Numérique et Sciences Informatiques, Sciences de l'Ingénieur

Vous devez:

- Lire et appliquer les consignes listées sur les documents réponse
- Ecrire vos réponses dans les cadres prédéfinis

Nous vous conseillons de répartir les 3h d'épreuves entre le sujet de Mathématiques QCM (1h) et le les 2 sujets de spécialité choisi $(2 \times 1h)$.

. . .

L'usage d'une calculatrice est autorisé.

Tout échange de calculatrices entre candidats, pour quelque raison que ce soit, est interdit.

Aucun document n'est autorisé.

L'usage d'un téléphone ou de tout objet communicant est interdit.

Table des matières:

Mathématiques QCM : 9 exercices	pages 2 à 3
Mathématiques spécialité : 2 exercices	pages 4 à 5
Physique-Chimie: 3 exercices	pages 6 à 8
Sciences de la Vie et de la Terre / Biologie-Ecologie : 3 exercices	pages 9 à 12
Numérique et Sciences Informatiques : 2 exercices	pages 13 à 15
Sciences de l'Ingénieur : 3 exercices	pages 16 à 18

Mathématiques - QCM (40 points)

Pour chaque **Exercice**, plusieurs affirmations sont proposées. Pour chaque affirmation, vous direz si elle est vraie ou fausse en coloriant la réponse choisie sur la feuille de réponses. Aucune justification n'est demandée. Une réponse fausse sera pénalisée par des points négatifs.

Pour chaque exercice, le total des points obtenu ne peut être strictement négatif.

Aucun point n'est enlevé en l'absence de réponse.

Les exercices sont tous indépendants.

Première partie - Fonctions

Exercice I

Soit f la fonction définie par $f(x) = \ln(x^2 + 1)$.

- **I-A-** La fonction f est définie sur \mathbb{R} .
- **I-B-** f'(0) est égal à 1.
- **I-C-** Pour tout x strictement négatif, f(x) est strictement négatif.
- **I-D-** $\lim_{x \to -\infty} f(x) = +\infty.$

Exercice II

Soient g une fonction définie et dérivable sur $\mathbb R$ et $\mathcal C_g$ sa courbe représentative dans un repère orthonormé.

- **II-A-** Si g(1) = 0, alors C_g coupe l'axe des ordonnées au point de coordonnées (1; 0).
- **II-B-** Si g(1) = 2 et g'(1) = 3, alors la courbe C_g admet une tangente d'équation y = 3x 1 au point de coordonnées (1; 2).
- **II-C-** Si g est deux fois dérivable et si sa dérivée seconde est positive sur \mathbb{R} , alors la courbe C_g est en dessous de chacune de ses tangentes.

Exercice III

- **III-A-** Pour tout nombre réel x, $e^{3x+1} = e^{3x} + e$.
- **III-B-** Pour tout nombre réel x non nul, $\frac{\ln(x^2)}{\ln(x^2+4)} = \ln\left(\frac{x^2}{x^2+4}\right)$.
- **III-C-** Pour tout nombre réel x positif, $2\ln(e^{\sqrt{x}}) = x$.
- III-D- L'ensemble des solutions de l'équation $e^{2x} 3e^x + 2 = 0$ est $\{0\}$.

Exercice IV

Soit *h* la fonction définie sur \mathbb{R} par $h(x) = \frac{e^{2x}+1}{e^x+1}$.

- IV-A- $\lim_{x \to +\infty} h(x) = 0.$
- IV-B- $\lim_{x \to 0} \widetilde{h}(x) = 1.$
- IV-C- $\lim_{x \to -\infty}^{x \to 0} h(x) = 1.$
- **IV-D-** Pour tout réel x, $h'(x) = \frac{e^{3x} + 2e^{2x} e^x}{e^{2x} + 1}$.

Deuxième partie - Suites numériques

Exercice V

Soit $(u_n)_{n\in\mathbb{N}}$ la suite géométrique de raison $q=\frac{1}{2}$ et telle que $u_2=1$.

- **V-A-** La suite $(u_n)_{n\in\mathbb{N}}$ est convergente.
- **V-B-** Pour tout entier naturel n, $u_n = \left(\frac{1}{2}\right)^n$.
- **V-C-** Pour tout entier naturel n non nul, $u_1 + u_2 + \cdots + u_n = 4\left(1 \left(\frac{1}{2}\right)^n\right)$.

Exercice VI

Soit $(v_n)_{n\in\mathbb{N}}$ la suite définie par $v_0=0$ et pour tout entier naturel n, $v_{n+1}=v_n+\frac{1}{(n+1)(n+2)}$.

- VI-A- $v_1 = \frac{1}{6}$.
- **VI-B-** La suite $(v_n)_{n\in\mathbb{N}}$ est décroissante.
- **VI-C-** La suite $(v_n)_{n\in\mathbb{N}}$ converge vers 0.
- VI-D- Pour tout entier naturel n, $v_n = \frac{n}{n+1}$.

Troisième partie - Probabilités

 Ω désigne l'univers d'une expérience aléatoire E et P désigne une probabilité sur Ω .

Exercice VII

Pour tous événements A et B de probabilité dans l'intervalle [0; 1[, on a :

- **VII-A-** $P_B(A) \times P(B) = P_A(B) \times P(A)$.
- **VII-B-** $P_A(A) = 1.$
- **VII-C-** $P_{\bar{A}}(B) = 1 P_A(B)$.
- **VII-D-** $P(B) = P_A(B) + P_{\bar{A}}(B).$

Exercice VIII

Soit *X* une variable aléatoire qui suit une loi binomiale de paramètres n = 10 et p = 0,2.

- **VIII-A-** $P(1 \le X < 3) = P(X \le 2) P(X = 0).$
- **VIII-B-** P(X > 1) est strictement positive.
- **VIII-C-** $P(X=0) = 0.2^{10}$.

Quatrième partie - Géométrie dans le plan

Exercice IX

On considère les points A,B et C de coordonnées respectives dans un repère orthonormé $\mathcal R$:

$$A(-1;1)$$
, B(3;4) et $C(8;\frac{3}{2})$.

- **IX-A-** La longueur du segment [AB] est $\sqrt{7}$.
- **IX-B-** Une équation de la droite (*AB*) est 3x 4y + 7 = 0.
- **IX-C-** Une équation de la médiatrice du segment [AB] est 8x + 6y 25 = 0.
- **IX-D-** Le projeté orthogonal *D* du point *C* sur la droite (*AB*) a pour coordonnées $\left(5; \frac{11}{2}\right)$.

Mathématiques Spécialité - EXERCICE I (18 points)

Dans cet exercice, n est un entier naturel non nul. Tous les résultats seront donnés sous la forme d'une fraction irréductible.

Une entreprise décide d'offrir à certains clients qui se connectent sur son site de vente en ligne une remise de 5 euros sur leur prochain achat.

La distribution des bons d'achat est programmée de la manière suivante :

- la probabilité que le premier client connecté obtienne un bon d'achat est $\frac{1}{5}$;
- si le $n^{\grave{e}me}$ client connecté gagne un bon d'achat, alors le client suivant gagne également un bon d'achat avec une probabilité de $\frac{3}{10}$;
- si le $n^{\grave{e}me}$ client connecté ne gagne pas de bon d'achat, alors le client suivant ne gagne pas non plus de bon d'achat avec une probabilité de $\frac{9}{10}$.

On considère les événements suivants :

 A_n : « le $n^{\grave{e}me}$ client connecté gagne un bon d'achat de 5 euros »

 $\overline{A_n}$: « le $n^{\grave{e}me}$ client connecté ne gagne pas un bon d'achat de 5 euros ».

On note $a_n = P(A_n)$.

- **I-1-** Donner la valeur de a_1 .
- **I-2-** Compléter l'arbre de probabilités donné dans la feuille de réponses.
- **I-3-** Exprimer $P(A_{n+1} \cap A_n)$ et $P(A_{n+1} \cap \overline{A_n})$ en fonction de a_n .
- I-4- En déduire que, pour tout entier naturel n non nul, $a_{n+1} = \frac{1}{5}a_n + \frac{1}{10}$. Justifier la réponse.

Dans la suite, on pose $u_n = a_n - \frac{1}{8}$ pour tout entier naturel n non nul.

- **I-5-a-** Calculer u_1 .
- **I-5-b-** Justifier que la suite $(u_n)_{n\geq 1}$ est une suite géométrique. Préciser sa raison q.
- **I-6-a-** Pour tout entier naturel n non nul, en déduire l'expression de u_n en fonction de n.
- **I-6-b-** Montrer que $a_n = \frac{3}{8 \times 5^n} + \frac{1}{8}$ pour tout entier naturel n non nul.
- **I-7-** Justifier que la suite $(a_n)_{n\geq 1}$ est convergente et donner sa limite l.
- **I-8-a-** Justifier que, pour tout entier naturel n non nul, $a_n > \frac{1}{8}$.
- **I-8-b-** Déterminer le plus petit entier naturel n_0 à partir duquel $a_n \frac{1}{8} \le 10^{-5}$. Justifier la réponse en utilisant la fonction logarithme.

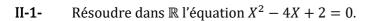
Mathématiques Spécialité - EXERCICE II (22 points)

Une question à choix multiples est signalée par la mention **QCM**. Plusieurs réponses sont proposées et il n'y a qu'une seule bonne réponse. Vous entourerez la réponse choisie sur la feuille de réponses. Aucune justification n'est demandée.

Une réponse fausse sera pénalisée par des points négatifs.

Le total des points obtenu à cet exercice ne peut être strictement négatif.

Aucun point n'est enlevé en l'absence de réponse.



L'espace est rapporté à un repère orthonormé $(0, \overrightarrow{\iota}, \overrightarrow{\jmath}, \overrightarrow{k})$. On donne les coordonnées suivantes :

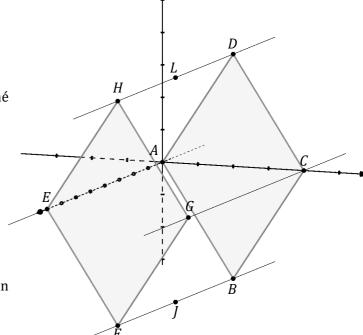
$$A(0;0;0), B(0;1;-\sqrt{3}),$$

$$C(0;2;0), D(0;1;\sqrt{3}),$$

$$E(4;0;0), F(4;1;-\sqrt{3}),$$

$$G(4;2;0), H(4;1;\sqrt{3}).$$

Soit I un point de coordonnées I(a;0;0) où a est un nombre réel de l'intervalle [0;4].



- **II-2-** Déterminer les coordonnées des points *J* et L, milieux respectifs des segments [*BF*] et [*DH*].
- **II-3-a-** Déterminer le réel *λ* tel que $\overrightarrow{AI} = \lambda \cdot \overrightarrow{AE}$. On exprimera *λ* en fonction de *a*.
- **II-3-b- QCM** Quel est l'ensemble décrit par le point *I* lorsque *a* décrit l'intervalle [0 ; 4] ?
 - **A)** le segment [AE]

C) le cercle de diamètre [AE]

B) la droite (AE)

D) un plan de vecteur normal \overrightarrow{AE}

On admet que les composantes des vecteurs \overrightarrow{IJ} et \overrightarrow{IL} s'expriment en fonction de a sous la forme : $\overrightarrow{IJ}(2-a;1;-\sqrt{3})$ et $\overrightarrow{IL}(2-a;1;\sqrt{3})$.

- II-4- Exprimer IJ^2 et IL^2 en fonction de a. On ne demande pas de développer l'expression. On observera, sans la justifier, l'égalité des longueurs IJ et IL.
- **II-5-a-** Déterminer les nombres réels m, n, et p tels que $\overrightarrow{IJ} \cdot \overrightarrow{IL} = m a^2 + n a + p$. Justifier la réponse.
- **II-5-b-** En déduire les valeurs de a pour lesquelles les vecteurs \overrightarrow{IJ} et \overrightarrow{IL} sont orthogonaux.

Dans les questions qui suivent, on prend $a = 2 + \sqrt{2}$.

- **II-6-a-** Justifier que les points I, J et L définissent un plan.
- **II-6-b-** Justifier que le vecteur \vec{n} (1; $\sqrt{2}$; 0) est normal au plan (*IJL*).
- **II-6-c-** En déduire une équation cartésienne du plan (*IJL*). Justifier la réponse.
- **II-7-** Donner une représentation paramétrique de la droite (*CG*).
- **II-8-** Déterminer les coordonnées de K, point d'intersection de la droite (CG) et du plan (IJL). Justifier la réponse.
- **II-9-** Préciser la nature du quadrilatère IJKL. Aucune justification n'est attendue.

STAGES PRÉPA CONCOURS GEIPI POLYTECH

LA MEILLEURE PRÉPA GEIPI POLYTECH

- Préparations complètes, adaptées aux dernières évolutions
- Toujours bienveillant et à l'écoute
- · Locaux conviviaux, à taille humaine
- Une équipe pédagogique de haut niveau

STAGES PRÉPA CONCOURS GEIPI POLYTECH EN LIGNE

- Des petits effectifs pour un meilleur suivi
- 10 ans d'expérience dans la préparation des concours
- Préparationnaires soudés et motivés

STAGES PRÉPA CONCOURS GEIPI POLYTECH

LA MEILLEURE PRÉPA GEIPI POLYTECH

- Préparations complètes, adaptées aux dernières évolutions
- Toujours bienveillant et à l'écoute
- · Locaux conviviaux, à taille humaine
- Une équipe pédagogique de haut niveau

STAGES PRÉPA CONCOURS GEIPI POLYTECH EN LIGNE

- Des petits effectifs pour un meilleur suivi
- 10 ans d'expérience dans la préparation des concours
- Préparationnaires soudés et motivés

