where the small energy of the initial thermal neutron has been ignored. (m_{N} denotes the nuclear mass.) Now
$\mathrm{m}_{\mathrm{N}}\left({ }^{235} \mathrm{U}\right)=m\left({ }^{235} \mathrm{U}\right)-92 \mathrm{~m}_{\mathrm{e}}$
ignoring the small electronic binding energies compared to rest mass energies.
Similarly for other nuclear masses.
$Q=\left[m\left({ }^{235} \mathrm{U}\right)-\mathrm{m}\left({ }^{94} \mathrm{Zr}\right)-m\left({ }^{140} \mathrm{Ce}\right)-\mathrm{m}_{\mathrm{n}}\right] \mathrm{c}^{2}$
Using the given data,
$\mathrm{Q}=213.3 \mathrm{MeV}$
c. $\quad 1 \mathrm{MWd}=10^{6} \mathrm{Js}^{-1} \times 24 \times 3600 \mathrm{~s}=8.64 \times 10^{10} \mathrm{~J}$

No. of atoms of ${ }^{235} U$ fissioned $=\frac{8.64 \times 10^{10}}{213.3 \times 1.60 \times 10^{-13}}=2.53 \times 10^{21}$
Mass of 235 U fissioned $=\frac{2.53 \times 10^{21} \times 235}{6.02 \times 10^{23}}=0.99 \mathrm{~g}$

Mass of ${ }^{235} \mathrm{U}$ in 1 kg uranium removed from the reactor $=7.2-0.99=6.2 \mathrm{~g}$
Abundance of ${ }^{235} \mathrm{U}$ is 0.62%

8. Radioactive decay

a. $\quad 1 \mu \mathrm{Ci}=3.7 \times 10^{4}$ disintegrations per second (dps).

Initial β-activity $=3.7 \times 10^{6} \mathrm{dps}$
$\left.\frac{-\mathrm{dN}}{1}\right|_{\mathrm{dt}}=\mathrm{N}_{1}^{\circ} \lambda_{1}=3.7 \times 10^{6} \mathrm{dps}$
where N_{1}^{o} is the number of atoms of ${ }^{210} \mathrm{Bi}$ at $\mathrm{t}=0$ and λ_{1} is its decay constant.

$$
\frac{0.693}{5.01 \times 24 \times 3600} \mathrm{~N}_{1}^{0}=3.7 \times 10^{6}
$$

$$
N_{1}^{0}=2.31 \times 10^{12}
$$

$$
\text { Intial mass of }{ }^{210} \mathrm{Bi}=2.31 \times 10^{12} \times \frac{210}{6.02 \times 10^{23}} \mathrm{~g}
$$

$$
=8.06 \times 10^{-10} \mathrm{~g}
$$

b. Number of atoms of ${ }^{210} \mathrm{Bi}$ at time t is given by

$$
N_{1}=N_{1}^{0} e^{-\lambda_{1} t}
$$

The number of atoms of ${ }^{210} \mathrm{Po}, \mathrm{N}_{2}$, is given by equation
$\frac{d N_{2}}{d t}=\lambda_{1} N_{1}-\lambda_{2} N_{2}$
where λ_{2} is the decay constant of ${ }^{210} \mathrm{Po}$.
$\frac{d N_{2}}{d t}=\lambda_{1} N_{1}^{0} e^{-\lambda_{1} t}-\lambda_{2} N_{2}$
Using the integrating factor $e^{\lambda_{2} t}$
$e^{\lambda_{2} t} \frac{d N_{2}}{d t}+\lambda_{2} N_{2} e^{\lambda_{2} t}=\lambda_{1} N_{1}^{0} e^{\left(\lambda_{2}-\lambda_{1}\right) t}$
$\frac{d}{d t}\left(N_{2} e^{\lambda_{2} t}\right)=\lambda_{1} N_{1}^{0} e^{\left(\lambda_{2}-\lambda_{1}\right) t}$
Integrating

$$
N_{2} e^{\lambda_{2} t}=\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} N_{1}^{0} e^{\left(\lambda_{2}-\lambda_{1}\right) t}+C
$$

To calculate C, use the condition that at $t=0, N_{2}=0$
$C=-\frac{\lambda_{1} N_{1}^{0}}{\lambda_{2}-\lambda_{1}}$
This gives
$N_{2}=\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} N_{1}^{0}\left(e^{-\lambda_{1} t}-e^{-\lambda_{2} t}\right)$

The time $t=T$ when N_{2} is maximum is given by the condition

$$
\left.\frac{\mathrm{d} \mathrm{~N}_{2}}{\mathrm{dt}}\right|_{\mathrm{t}=\mathrm{T}}=0
$$

which gives
$\mathrm{T}=\frac{\ln \frac{\lambda_{1}}{\lambda_{2}}}{\lambda_{1}-\lambda_{2}}=24.9 \mathrm{~d}$
At $t=T, N_{2}$ can be calculated from above.
$\mathrm{N}_{2}=2.04 \times 10^{12}$
Mass of ${ }^{210} \mathrm{Po}$ at $\mathrm{t}=\mathrm{T}$,
$=7.11 \times 10^{-10} \mathrm{~g}$
c. $\quad \alpha$-disintegration rate of ${ }^{210} \mathrm{Po}$ at $\mathrm{t}=\mathrm{T}$
$=1.18 \times 10^{5} \mathrm{dps}$
At $t=T$
β-disintegration rate of ${ }^{210} \mathrm{Bi}$
$=\alpha$-disintegration rate of ${ }^{210} \mathrm{Po}=1.18 \times 10^{5} \mathrm{dps}$
9. Redox reactions
a.
i. Over-all reaction

$$
\begin{aligned}
\mathrm{Sn}^{2+}+2 \mathrm{Fe}^{3+} \rightarrow & \mathrm{Sn}^{4+}+2 \mathrm{Fe}^{2+} \quad \mathrm{E}^{\circ}=+0.617 \mathrm{~V} \\
\Delta \mathrm{G}^{\circ}=-\mathrm{nFE} & \\
& =-2 \mathrm{FE}^{\circ} \\
& =-2 \times 96485 \times 0.617 \mathrm{~V} \\
& =-119 \mathrm{KJ}
\end{aligned}
$$

ii.

$$
\begin{aligned}
E^{\circ} & =\frac{0.0592}{n} \log K \\
\log K & =\frac{(2 \times 0.617)}{0.0592} \cong 20.84 \\
K & =6.92 \times 10^{20}
\end{aligned}
$$

b. Before the equivalence point, E of the cell is given by following equation

$$
\begin{aligned}
\mathrm{E}_{\text {cell }} & ={ }_{\text {ox }} \mathrm{E}_{\mathrm{S} . \mathrm{C} . \mathrm{E}}^{0}+\operatorname{red}^{\mathrm{E}_{\mathrm{Sn}^{4+} / \mathrm{Sn}}{ }^{2+}}-\frac{0.0592}{2} \log \frac{\left[\mathrm{Sn}^{2+}\right]}{\left[\mathrm{Sn}^{4+}\right]} \\
& =-0.242+0.154-\frac{0.0592}{2} \log \frac{\left[\mathrm{Sn}^{2+}\right]}{\left[\mathrm{Sn}^{4+}\right]}
\end{aligned}
$$

i. The addition of 5.00 mL of Fe^{3+} converts $5.00 / 20.00$ of the Sn^{2+} to Sn^{4+}; thus

$$
\begin{aligned}
& \frac{\left[\mathrm{Sn}^{2+}\right]}{\left[\mathrm{Sn}^{4+}\right]}=\frac{15.0 / 20.0}{5.0 / 20.0}=3.00 \\
& \mathrm{E}_{\text {cell }}=-0.102 \mathrm{~V}
\end{aligned}
$$

ii. At the equivalence point, add the two expressions corresponding to $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$ and $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$.
$2 \mathrm{E}_{\text {cell }}=2$ ox $\mathrm{E}_{\text {S.C.E }}^{\circ}+2 \quad \mathrm{red} \mathrm{E}_{\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}}^{\circ}-0.0592 \log \frac{\left[\mathrm{Sn}^{2+}\right]}{\left[\mathrm{Sn}^{4+}\right]}$
$1 \mathrm{E}_{\text {cell }}={ }_{o x} \mathrm{E}_{\text {S.C.E }}^{\circ}+{ }_{\mathrm{red}} \mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}}{ }^{2+}-0.0592 \log \frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]}$
to get
$3 \mathrm{E}_{\text {cell }}=3{ }_{\text {ox }} \mathrm{E}_{\text {S.C.E }}^{\circ}+2{ }_{\mathrm{red}} \mathrm{E}_{\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}}^{\circ}+{ }_{\mathrm{red}} \mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{\circ}-0.0592 \log \frac{\left[\mathrm{Sn}^{2+}\right]\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Sn}^{4+}\right]\left[\mathrm{Fe}^{3+}\right]}$

At the equivalence point, $\left[\mathrm{Fe}^{3+}\right]=2\left[\mathrm{Sn}^{2+}\right]$ and $\left[\mathrm{Fe}^{2+}\right]=2\left[\mathrm{Sn}^{4+}\right]$
Thus,

$$
\begin{aligned}
& \mathrm{E}_{\text {cell }}={ }_{\text {ox }} \mathrm{E}_{\mathrm{S} . \mathrm{C} . \mathrm{E}}^{\circ}+\frac{2_{\mathrm{red}} \mathrm{E}_{\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}}^{\circ}+{ }_{\mathrm{red}} \mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}}^{\circ}}{3} \\
& =-0.242+\frac{(2)(0.154)+0.771}{3}=+0.118 \mathrm{~V}
\end{aligned}
$$

Beyond the equivalence point, E of the cell is given by following equation

$$
\mathrm{E}_{\text {cell }}={ }_{\text {ox }} \mathrm{E}_{\text {S.C.E }}^{\circ}+{ }_{\mathrm{red}} \mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{\circ}-0.0592 \log \frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]}
$$

When 30 mL of Fe^{3+} is added, 10 mL of Fe^{3+} is in excess. i.e.
$\frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]}=\frac{20.0}{10.0}=2.00$
$\mathrm{E}_{\text {cell }}=0.511 \mathrm{~V}$
c.
i. $\quad \Delta G^{\circ}=-R T \ln K_{s p}$

$$
=68.27 \mathrm{~K} \mathrm{~J}
$$

$$
\Delta \mathrm{G}^{\circ}=-\mathrm{nFE}^{\circ}, \quad \mathrm{n}=1
$$

$$
E^{\circ}=-0.707 V
$$

ii.

$$
\begin{array}{ll}
\mathrm{Cu}^{+}+\mathrm{I}^{-}=\mathrm{CuI}_{(\mathrm{s})} & \mathrm{E}^{\circ}=0.707 \mathrm{~V} \\
\mathrm{Cu}^{2+}+\mathrm{e}^{-}=\mathrm{Cu}^{+} & \mathrm{E}^{\circ}=0.153 \mathrm{~V}
\end{array}
$$

The overall reaction for reduction of Cu^{2+} by I^{-}is

$$
\mathrm{Cu}^{2+}+\mathrm{I}^{-}+\mathrm{e}^{-}=\mathrm{Cul}_{(\mathrm{s})} \quad \mathrm{E}^{\circ}=0.86 \mathrm{~V}
$$

The E° value for the reduction of Cu^{2+} by I^{-}can now be calculated
$2 \times \mathrm{Cu}^{2+}+\mathrm{I}^{-}+\mathrm{e}^{-}=\mathrm{Cul}_{(\mathrm{s})}$
$\mathrm{E}^{\circ}=0.86 \mathrm{~V}$
$I_{2}+2 e^{-}=2 I^{-}$
$\mathrm{E}^{\circ}=0.535 \mathrm{~V}$

The over-all reaction is

$$
2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \rightarrow 2 \mathrm{Cul}_{(\mathrm{s})}+\mathrm{I}_{2} \quad \mathrm{E}^{\circ}=0.325 \mathrm{~V}
$$

The positive value of effective E° indicates that the reduction reaction is spontaneous. This has come about since in this reaction, I^{-}is not only a reducing agent, but is also a precipitating agent. Precipitation of Cu^{+} as Cul is the key step of the reaction, as it practically removes the product Cu^{+}from the solution, driving the reaction in the forward direction.
iii. $\quad \Delta \mathrm{G}^{0}=-\mathrm{nF} \mathrm{E}^{\circ}$

$$
\begin{aligned}
& \text { Here } \quad n=1, \quad E^{\circ}=0.325 V \\
& \Delta G^{\circ}=-31.3 \mathrm{~kJ} \\
& \Delta G^{\circ}=-R T \ln K \\
& \log K=5.47 \\
& K=2.9 \times 10^{5}
\end{aligned}
$$

10. Solubility of sparingly soluble salts

a. $\quad \mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4(\mathrm{~s})}=2 \mathrm{Ag}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$

The solubility product Ksp is given by
$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]$
If S is the solubility of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$

$$
\begin{equation*}
\left[\mathrm{Ag}^{+}\right]=2 \mathrm{~S} \tag{1}
\end{equation*}
$$

The total oxalate concentration, denoted by $\mathrm{C}_{0 \mathrm{x}}$, is

$$
\begin{equation*}
\mathrm{C}_{0 \mathrm{x}}=\mathrm{S}=\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]+\left[\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right]+\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right] \tag{2}
\end{equation*}
$$

The dissociation reactions are:

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=\mathrm{H}^{+}+\mathrm{HC}_{2} \mathrm{O}_{4}^{-} & \mathrm{K}_{1}=5.6 \times 10^{-2} \\
\mathrm{HC}_{2} \mathrm{O}_{4}^{-}=\mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} & \mathrm{K}_{2}=6.2 \times 10^{-5} \tag{4}
\end{array}
$$

Eqs. (2), (3) and (4) give
$\mathrm{C}_{0 \mathrm{x}}=\mathrm{S}=\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]+\frac{\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]\left[\mathrm{H}^{+}\right]}{\mathrm{K}_{2}}+\frac{\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]\left[\mathrm{H}^{+}\right]^{2}}{\mathrm{~K}_{1} \mathrm{~K}_{2}}$
$\therefore\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]=\alpha \mathrm{C}_{\mathrm{ox}}=\alpha \mathrm{S}$
where $\quad \alpha=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\left[\mathrm{H}^{+}\right]^{2}+\mathrm{K}_{1}\left[\mathrm{H}^{+}\right]+\mathrm{K}_{1} \mathrm{~K}_{2}}$
At $\mathrm{pH}=7,\left[\mathrm{H}^{+}\right]=10^{-7}$ and $\alpha \cong 1$
$\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~S}^{3}=3.5 \times 10^{-11}$

At $\mathrm{pH}=5.0,\left[\mathrm{H}^{+}\right]=10^{-5}$

From the values of $\mathrm{K}_{1}, \mathrm{~K}_{2}$ and $\left[\mathrm{H}^{+}\right]$, we get
$\alpha=0.861$
$\mathrm{K}_{\mathrm{sp}}=[2 \mathrm{~S}]^{2}[\alpha \mathrm{~S}]$
$\therefore \quad S=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{4 \alpha}\right)^{\frac{1}{3}}=2.17 \times 10^{-4}$
b. $\left[\mathrm{NH}_{3}\right]=0.002$

At $\mathrm{pH}=10.8, \quad\left[\mathrm{H}^{+}\right]=1.585 \times 10^{-11}$

Eq. (5) implies
$\alpha=1$
i.e $\quad C_{0 x}=S=\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-2}\right]$

The total silver ion in the solution is given by

$$
\begin{equation*}
\mathrm{C}_{\mathrm{Ag}}=2 \mathrm{~S}=\left[\mathrm{Ag}^{+}\right]+\left[\mathrm{AgNH}_{3}^{+}\right]+\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right] \tag{8}
\end{equation*}
$$

The complex formation reactions are
$\mathrm{Ag}^{+}+\mathrm{NH}_{3}=\mathrm{AgNH}_{3}{ }^{+}$
$\mathrm{K}_{3}=1.59 \times 10^{3}$
$\mathrm{AgNH}_{3}{ }^{+}+\mathrm{NH}_{3}=\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$
$K_{4}=6.76 \times 10^{3}$

From eqs. (8), (9) and (10)

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{Ag}}=2 \mathrm{~S}=\left[\mathrm{Ag}^{+}\right]\left\{1+\mathrm{K}_{3}\left[\mathrm{NH}_{3}\right]+\mathrm{K}_{3} \mathrm{~K}_{4}\left[\mathrm{NH}_{3}\right]^{2}\right\} \\
& \therefore \quad\left[\mathrm{Ag}^{+}\right]=\beta \times \mathrm{C}_{\mathrm{Ag}}=\beta \times 2 \mathrm{~S} \\
& \text { where } \quad \beta=\frac{1}{1+\mathrm{K}_{3}\left[\mathrm{NH}_{3}\right]+\mathrm{K}_{3} \mathrm{~K}_{4}\left[\mathrm{NH}_{3}\right]^{2}}
\end{aligned}
$$

Using the values of $\mathrm{K} 3, \mathrm{~K}_{4}$ and $\left[\mathrm{NH}_{3}\right]$,

$$
\beta=2.31 \times 10^{-4}
$$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right] \\
&=[\beta \times 2 \mathrm{~S}]^{2}[\mathrm{~S}] \\
& \therefore \mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{4 \beta^{2}}\right)^{\frac{1}{3}} \\
&=5.47 \times 10^{-2}
\end{aligned}
$$

11. Spectrophotometry

a. Denote the molar absorptivity of MnO_{4}^{-}at 440 nm and 545 nm by ε_{1} and ε_{2} and that of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-}$by \in_{3} and \in_{4} :

$$
\begin{array}{ll}
\epsilon_{1}=95 \mathrm{Lmol}^{-1} \mathrm{~cm}^{-1}, & \epsilon_{2}=2350 \mathrm{Lmol}^{-1} \mathrm{~cm}^{-1} \\
\epsilon_{3}=370 \mathrm{Lmol}^{-1} \mathrm{~cm}^{-1}, & \epsilon_{4}=11 \mathrm{Lmol}^{-1} \mathrm{~cm}^{-1}
\end{array}
$$

The absorbance A is related to \% transmittance T by
$A=2-\log T$
From the values given for the sample solution
$A_{440}=2-\log 35.5=0.45$
$A_{545}=2-\log 16.6=0.78$

Now if one denotes the molar concentrations of $\mathrm{MnO}_{4}{ }^{-}$and $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ in the steel sample solution by C_{1} and C_{2} respectively, we have
$\mathrm{A}_{440}=\epsilon_{1} \times \mathrm{C}_{1} \times 1+\epsilon_{3} \times \mathrm{C}_{2} \times 1$
$A_{545}=\epsilon_{2} \times C_{1} \times 1+\epsilon_{4} \times C_{2} \times 1$

Using the given data, we get
$\mathrm{C}_{1}=0.0003266 \mathrm{M}$
$\mathrm{C}_{2}=0.001132 \mathrm{M}$

Amount of Mn in 100 mL solution
$=0.0003266 \mathrm{molL}^{-1} \times 54.94 \mathrm{gmol}^{-1} \times 0.1 \mathrm{~L}$
$=0.001794 \mathrm{~g}$
$\% \mathrm{Mn}$ in steel sample $=\frac{0.001794 \times 100}{1.374}=0.13 \%$

Amount of Cr present in 100 mL solution
$=0.001132 \mathrm{~mol} \mathrm{~L}^{-1} \times 2 \times 52.00 \mathrm{~g} \mathrm{~mol}^{-1} \times 0.1 \mathrm{~L}$
$=0.0118 \mathrm{~g}$
$\%$ Cr in steel sample $=\frac{0.0118 \times 100}{1.374}=0.86 \%$
b. In solution 1, since all the ligand is consumed in the formation of the complex,

$$
\left[\mathrm{CoL}_{3}^{2+}\right]=\frac{2 \times 10^{-5}}{3}=0.667 \times 10^{-5}
$$

Absorptivity of the complex $\mathrm{CoL}_{3}{ }^{2+}$ is

$$
\epsilon=\frac{0.203}{0.667 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \times 1.0 \mathrm{~cm}}=3.045 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}
$$

If the concentration of the complex $\mathrm{CoL}_{3}{ }^{2+}$ in solution 2 is C ,

$$
C=\frac{0.68}{3.045 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} \times 1.0 \mathrm{~cm}}
$$

$=\quad 2.233 \times 10^{-5} \mathrm{M}$
$\left[\mathrm{Co}^{2+}\right]=\left[\mathrm{Co}^{2+}\right]_{\text {total }}-\left[\mathrm{CoL}_{3}{ }^{2+}\right]$
$=3 \times 10^{-5}-2.233 \times 10^{-5}=0.767 \times 10^{-5}$

Similarly, $\quad[\mathrm{L}]=[\mathrm{L}]_{\text {total }}-3\left[\mathrm{CoL}_{3}{ }^{2+}\right]$
$=7 \times 10^{-5}-3 \times 2.233 \times 10^{-5}=0.300 \times 10^{-5}$

The complex formation reaction is

$$
\mathrm{Co}^{2+}+3 \mathrm{~L}=\left[\mathrm{CoL}_{3}^{2+}\right]
$$

The stability constant K is given by

$$
\begin{aligned}
\mathrm{K} & =\frac{\left[\mathrm{CoL}_{3}^{2+}\right]}{\left[\mathrm{Co}^{2+}\right][\mathrm{L}]^{3}} \\
& =1.08 \times 10^{17}
\end{aligned}
$$

12. Reactions in buffer medium

$$
\begin{aligned}
& \mathrm{RNO}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e} \rightarrow \mathrm{RNHOH}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{HOAc}=\mathrm{H}^{+}+\mathrm{OAc}^{-} \\
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OAc}^{-}\right]}{[\mathrm{HOAc}]} \\
& \text { i.e } \\
& \mathrm{pK}_{\mathrm{a}}=\mathrm{pH}+\log \frac{[\mathrm{HOAc}]}{\left[\mathrm{OAc}^{-}\right]}
\end{aligned}
$$

$4.76=5.0+\log \frac{\left[\mathrm{HOAc}^{-}\right]}{\left[\mathrm{OAc}^{-}\right]}$
$\frac{\left[\mathrm{HOAc}^{-}\right]}{\left[\mathrm{OAc}^{`}\right]}=0.5715$
$[\mathrm{HOAc}]+\left[\mathrm{OAc}^{-}\right]=0.500$
$\left[\mathrm{OAc}^{-}\right.$] $=0.3182$
$[\mathrm{HOAc}]=0.5-0.3182=0.1818$
mmoles of acetate $\left(\mathrm{OAc}^{-}\right)$present initially in 300 mL
$=0.3182 \times 300=95.45$
mmoles of acetic acid (HOAc) present initially in 300 mL
$=0.1818 \times 300=54.55$
mmoles of RNO_{2} reduced
$=300 \times 0.0100=3$
From the stoichiometry of the equation, 3 mmoles of RNO_{2} will consume 12 moles of H^{+}for reduction. The H^{+}is obtained from dissociation of HOAc .

On complete electrolytic reduction of RNO_{2},

$$
\begin{aligned}
& \text { mmoles of } \mathrm{HOAc}=54.55-12.00=42.55 \\
& \text { mmoles of } \mathrm{OAc}^{-}=95.45+12.00=107.45 \\
& 4.76=\mathrm{pH}+\log \frac{42.55}{107.45} \\
& \mathrm{pH}=5.16
\end{aligned}
$$

13. Identification of an inorganic compound

a. The white gelatinous precipitate in group (III) obtained by qualitative analysis of solution \mathbf{B} indicates the presence of Al^{3+} ions. The white precipitate with AgNO_{3} indicates the presence of Cl^{-}ions.

From the above data the compound \mathbf{A} must be a dimer of aluminium chloride $\mathrm{Al}_{2} \mathrm{Cl}_{6}$.
b. The reactions are as follows

$$
\begin{aligned}
& \mathrm{Al}_{2} \mathrm{Cl}_{6} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} 2\left[\mathrm{Al} .6 \mathrm{H}_{2} \mathrm{O}\right]^{3+}+6 \mathrm{Cl}^{-} \\
& 6 \mathrm{Cl}^{-}+6 \mathrm{AgNO}_{3} \longrightarrow 6 \mathrm{AgCl}_{(\mathrm{s})}+6 \mathrm{NO}_{3}^{-} \\
& \mathrm{AgCl}_{(\mathrm{s})}+\mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})} \longrightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)^{+} \text {or } \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}^{-} \\
& \mathrm{Al}^{3+}+\mathrm{NH}_{4} \mathrm{OH}_{(\text {(aq) }} \longrightarrow \mathrm{Al}(\mathrm{OH})_{3(\mathrm{~s})}+\mathrm{NH}_{4}^{+} \\
& \mathrm{Al}(\mathrm{OH})_{3(\mathrm{~s})}+\mathrm{NaOH}_{(\text {aq) }} \longrightarrow\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}+\mathrm{Na}^{+} \\
& {\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}+\mathrm{CO}_{2} \longrightarrow \mathrm{Al}(\mathrm{OH})_{3(\mathrm{~s})}+\mathrm{HCO}_{3}^{-}} \\
& \mathrm{Al} \mathrm{Cl}_{6}+\mathrm{LiH} \longrightarrow\left(\mathrm{AlH}_{3}\right)_{\mathrm{n}} \xrightarrow{\text { excess of } \mathrm{LiH}}{\mathrm{Li}\left[\mathrm{AlH}_{4}\right]}^{2}
\end{aligned}
$$

14. Ionic and metallic structures

a.
i. The lattice of NaCl consist of interpenetrating fcc lattices of Na^{+}and Cl^{-}
ii. The co-ordination number of sodium is six since, it is surrounded by six nearest chloride ions.
iii. For NaCl , the number of Na^{+}ions is: twelve at the edge centres shared equally by four unit cells thereby effectively contributing $12 \times 1 / 4=$
$3 \mathrm{Na}^{+}$ions per unit cell and one at body center. Thus, a total of $3+1=4$ Na^{+}ions per unit cell.

Number of Cl^{-}ions is: six at the center of the faces shared equally by two unit cells, thereby effectively contributing $6 \times 1 / 2=3 \mathrm{Cl}^{-}$ions per unit cell and eight at the corners of the unit cell shared equally by eight unit cells thereby effectively contributing $8 \times 1 / 8=1 \mathrm{Cl}^{-}$ion per unit cell. Thus, a total of $3+1=4 \mathrm{Cl}^{-}$ions per unit cell.

Hence, the number of formula units of NaCl per unit cell $=4 \mathrm{Na}^{+}+4 \mathrm{Cl}^{-}$ $=4 \mathrm{NaCl}$
iv. The face diagonal of the cube is equal to $\sqrt{ } 2$ times 'a' the lattice constant for NaCl . The anions/anions touch each other along the face diagonal. The anion/cations touch each other along the cell edge.

Thus, $\mathrm{a}=2\left(\mathrm{r}_{\mathrm{Na}^{+}}+\mathrm{rcI}_{\mathrm{Cl}}\right)$
Face diagonal $\sqrt{2} \mathrm{a}=4 \mathrm{rcI}$
Substituting for 'a' from (1) into (2) we get :
$\sqrt{ } 2 \times 2\left(r_{\mathrm{Na}^{+}}+\mathrm{r}_{\mathrm{Cl}}\right)=4 \mathrm{r}_{\mathrm{Cl}}$ from which,
the limiting radius ratio $r_{\mathrm{Na}^{+}}{ }^{+} \mathrm{r}_{\mathrm{Cl}}=\underline{0.414}$
v. The chloride ion array is expanded to make the octahedral holes large enough to accommodate the sodium ions since, the $\mathrm{r}_{\mathrm{Na}}{ }^{+} / \mathrm{r}_{\mathrm{Cl}}$ ratio of 0.564 is larger than the ideal limiting value of 0.414 for octahedral six coordination number.
vi. As the cation radius is progressively increased, the anions will no longer touch each other and the structure becomes progressively less stable. There is insufficient room for more anions till the cation / anion radius ratio equals 0.732 when, eight anions can just be grouped around the cation resulting in a cubic eight coordination number as in CsCl .
vii. Generally, the fcc structure with a six coordination number is stable in the cation/anion radius ratio range 0.414 to 0.732 . That is, if $0.414<$ $\mathrm{r}^{+} / \mathrm{r}^{-}<0.732$ then, the resulting ionic structure will generally be NaCl type fcc.
b.
i. Bragg's law states $\lambda=2 d_{\text {hkl }} \operatorname{Sin}(\theta)$
$154 \mathrm{pm}=2 \times \mathrm{d}_{200} \operatorname{Sin}\left(15.8^{\circ}\right)$
$d_{200}=\frac{154 \mathrm{pm}}{2 \times \operatorname{Sin}\left(15.8^{\circ}\right)}=\frac{154 \mathrm{pm}}{2 \times 0.272}=283 \mathrm{pm}$
Thus, the separation between the (200) planes of NaCl is $\underline{283 \mathrm{pm}}$.
ii. Length of the unit cell edge, $a=d_{100}=2 \times d_{200}$
$\mathrm{a}=2 \times 283 \mathrm{pm}=566 \mathrm{pm}$.
iii. Since it is an fcc lattice,
cell edge, $\mathrm{a}=2\left(\mathrm{r}_{\mathrm{Na}}{ }^{+}+\mathrm{r}_{\mathrm{Cl}}^{-}\right)$
radius of sodium ion $\mathrm{r}_{\mathrm{Na}+}=\frac{\mathrm{a}-2}{2} \mathrm{r}_{\mathrm{Cl}}^{-}=\frac{566-362}{2}=\underline{102 \mathrm{pm}}$
c.
i. The difference in an $h c p$ and a ccp arrangement is as follows:

The two ' A ' layers in a hcp arrangement are oriented in the same direction making the packing of successive layers $A B A B$.. and the pattern repeats after the second layer whereas, they are oriented in the opposite direction in a ccp arrangement resulting in a ABCABC... packing pattern which repeats after the third layer.

The unit cell in a ccp arrangement is based on a cubic lattice whereas in a hcp arrangement it is based on a hexagonal lattice.
ii. Packing fraction $=\frac{\text { Volume occupied by } 4 \text { atoms }}{\text { Volume of unit cell }}$

Let 'a' be the length of the unit cell edge
Since it is an fcc lattice, face diagonal $=\sqrt{ } 2 a=4 r$ \qquad

Volume of the unit cell $=a^{3}$
Packing fraction $=\frac{4 \times 4 \pi \mathrm{r}^{3}}{3 \times \mathrm{a}^{3}}$.

Substituting for 'a' from (1) into (2), we get
Packing fraction $=\frac{4 \times 4 \times 22 \times(\sqrt{2})^{3} \times \mathrm{r}^{3}}{3 \times 7 \times(4 r)^{3}}=0.74$
Thus, packing fraction in a ccp arrangement $=\underline{0.74}$
iii. The coordination number(12) and the packing fraction (0.74) remain the same in a hcp as in a ccp arrangement.
d.
i. For an $f c c$, face diagonal $=\sqrt{ } 2 \mathrm{a}=4 \mathrm{r}_{\mathrm{Ni}}$
where $\mathrm{a}=$ lattice constant
$r_{\mathrm{Ni}}=$ radius of the nickel atom
$\mathrm{r}_{\mathrm{Ni}}=\frac{\sqrt{ } 2 \times \mathrm{a}}{4}=\frac{\sqrt{ } 2 \times 352.4 \mathrm{pm}}{4}=\underline{124.6 \mathrm{pm}}$
ii. Volume of unit cell $=a^{3}=(3.524 \AA)^{3}=43.76 \AA^{3}$
iii. Density of Nickel, $\rho_{\mathrm{Ni}}=\frac{\mathrm{Z} \times \mathrm{M} / \mathrm{N}}{\mathrm{V}}$

No. of Ni atoms, $\mathrm{Z}=4$ for an $f c c$ lattice

Avogadro constant

$$
\begin{aligned}
N=\frac{Z \times M}{\rho_{\mathrm{Ni}} V} & =\frac{4 \times 58.69 \mathrm{~g} \mathrm{~mol}^{-1}}{8.902 \mathrm{~g} \mathrm{~cm}^{-3} \times 43.76 \times 10^{-24} \mathrm{~cm}^{3}} \\
N & =\underline{6.02 \times 10^{23} \mathrm{~mol}^{-1}}
\end{aligned}
$$

15. Compounds of nitrogen

a.
i. $\quad \mathrm{NO}_{2}$: No. of electrons in the valence shell around nitrogen
$=5+0+2=7$

The Lewis structure for NO_{2} is as shown below.

:Ö: : N: Ö:

According to VSEPR, the molecule ideally should have linear geometry. However, this molecule has one single unpaired electron present on nitrogen. Due to the repulsion between the unpaired electron and the other two bonded pairs of electrons, the observed bond angle is less than $180\left(132^{\circ}\right)$. Thus, the shape of the molecule is angular as shown below.

ii. $\quad \mathrm{NO}_{2}{ }^{+}$: No. of electrons in the valence shell around nitrogen
$=(5+2+2-1)=8$

The Lewis structure is as shown below

```
Ö::\stackrel{+}{N}::Ö:
```

Thus, there are no non-bonded electrons present on nitrogen. The two σ - bonds will prefer to stay at 180° to minimize repulsion between bonded electron pairs giving a linear geometry $\left(180^{\circ}\right)$. The π-bonds do not influence the shape.

$\mathrm{NO}_{2}{ }^{-}$: No. of electron in the valence shell around nitrogen
$=5+2+1=8$

The Lewis structure is as shown below

In case of NO_{2}^{-}, there is a lone pair of electrons present on nitrogen.
Due to strong repulsion between the lone pair of electrons and the bonded pairs of electrons the angle between the two bond pairs shrinks from the ideal 120° to 115°.
b. In case of trimethylamine, the shape of the molecule is pyramidal with a lone pair present on nitrogen. Due to the lone pair Me-N-Me angle is reduced from $109^{\circ} 4^{\prime}$ to 108°.

However, in case of trisilylamine, d orbital of silicon and porbital of nitrogen overlaps giving double bond character to the $\mathrm{N}-\mathrm{Si}$ bond. Thus, delocalisation of the lone electron pair of nitrogen takes place and the resultant molecule is planar with 120° bond angle.

filled p-orbital
c. Both N and B are tricovalent. However, NF_{3} is pyramidal in shape. In case of BF_{3}, the $\mathrm{B}-\mathrm{F}$ bond gets double bond character due to the overlapping of p orbitals present on boron and fluorine. The observed bond energy is, therefore, much greater in BF_{3}

d.
i. The difference in boiling points of NF_{3} and NH_{3} is due to hydrogen bonding which is present in ammonia.

High electronegativity of fluorine decreases the basicity of nitrogen in NF_{3}. Thus, NF_{3} does not act as a Lewis base.
ii. In NF_{3}, the unshared pair of electrons contributes to a dipole moment in the direction opposite to that of the net dipole moment of the

N-F bonds. See figure (a).

NF_{3}
(a)

(b)

In NH_{3}, the net dipole moment of the $\mathrm{N}-\mathrm{H}$ bonds and the dipole moment due to the unshared pair of electrons are in the same direction. See figure (b).
e.

$$
\begin{aligned}
& 2 \mathrm{NaNO}_{3}+8 \mathrm{Na}(\mathrm{Hg})+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}+8 \mathrm{NaOH}+8 \mathrm{Hg} \\
& \mathrm{NH}_{2} \mathrm{OH}+\mathrm{EtNO}_{2}+2 \mathrm{NaOEt} \rightarrow \mathrm{Na}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}+3 \mathrm{EtOH}
\end{aligned}
$$

$\mathrm{Na}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ is the salt of $\mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ (Hyponitrous acid).

Structure :

or

Isomer is: $\mathrm{H}_{2} \mathrm{~N}-\mathrm{NO}_{2} \quad$ (Nitramide)

16. Structure elucidation with stereochemistry
a.

3-oxo-1,3-pentanedioic acid
α - Hydroxy carboxylic acids undergo similar reaction.
b. Molecular weight of $\mathbf{A}=236$
$20 \mathrm{~mL} 0.05 \mathrm{M} \mathrm{KOH} \equiv 118 \mathrm{mg} \mathrm{A}$
$1000 \mathrm{~mL} 1 \mathrm{M} \mathrm{KOH} \equiv 118 \mathrm{~g} \mathrm{~A}$
\therefore The acid is dibasic
Molecular weight of $\mathbf{A}=236$
$80 \mathrm{mg} \mathrm{Br} 2_{2} \equiv 118 \mathrm{mg} \mathbf{A}$
$160 \mathrm{gm} \mathrm{Br}_{2} \equiv 236 \mathrm{~g} \mathrm{~A}$
A contains one double bond

It has anisole ring in the molecule

It is formed from $\mathrm{HOOC}-\mathrm{CH}_{2}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{COOH}$
It has molecular formula $\mathbf{C}_{12} \mathbf{H}_{12} \mathbf{O}_{5}$
Due to steric hindrance the attachment of the aliphatic portion on the anisole ring will be para with respect to $-\mathrm{OCH}_{3}$. Hence the structure will be

As \mathbf{A} forms anhydride the two COOH groups should be on the same side of the double bond.
c. Isomers of \mathbf{A}

(E) 3-(2-methoxyphenyl)-2-pentenedioic acid

(Z) 3-(2-methoxyphenyl)-2-pentenedioic acid

