
(Z) 3-(4-methoxyphenyl)-2-pentenedioic acid
d. Two products are possible when compound \mathbf{A} reacts with bromine.

[1]

[2]

Structures 1 and 2 are enantiomers.
e.

f.

B

C
g. In the formation of compound \mathbf{A} from anisole, the attack takes place at the p position of the $\mathbf{O C H}_{3}$ group. However, when compound \mathbf{B} is formed from phenol, the attack takes place at the o-position of the $\mathbf{O H}$ group. Steric
hindrance of OCH_{3} group favours the attack at the para position. Steric hindrance of the $\mathbf{O H}$ group is comparatively less. Thus, the attack is possible at the ortho or para positions. However, addition at ortho position is favoured as it leads to cyclization of the intermediate acid to stable B.
h. Phenol has only one $\mathbf{O H}$ group on the phenyl ring whereas resorcinol has two OH groups on the phenyl ring at the m-positions. Hence, position 4 is considerably more activated (i.e, electron rich) in the case of resorcinol.

Phenol

Resorcinol

Therefore, under identical reaction conditions, the yield of compound \mathbf{C} is much higher than that of \mathbf{B}.

17. Organic spectroscopy and structure determination

a. The given Molecular formula is $\mathbf{C}_{3} \mathbf{H}_{6} \mathbf{O}$. Therefore, the possible structures are:

I

II

III

IV

v

VI

The NMR spectrum of compound \mathbf{A} shows a single peak which indicates that all the protons in \mathbf{A} are equivalent. This holds true only for structure I. The IUPAC name of this compound is 2-propanone.

The NMR spectrum of compound \mathbf{B} shows four sets of peaks, which indicate the presence of four non-equivalent protons. This holds true for structures III and IV. However, for structure IV, no singlet peak (see peak at $\delta=3$) will be observed. So, compound B must have structure III. The IUPAC name is 1 methoxyethene.
b.

Three doublets of doublets centred at $6.5 \mathrm{ppm}, 3.9 \mathrm{ppm}, 3.5 \mathrm{ppm}$ are seen in the spectrum. The assignments in the spectrum are

H_{a}	$:$	6.5 ppm
H_{b}	$:$	3.5 ppm
H_{c}	$:$	3.9 ppm

Due to the presence of electron donating $\mathbf{O C H}_{3}$, the trans proton H_{b} has higher electron density and thus more shielded than H_{c}. Thus, H_{b} appears upfield as compared to H_{c}. There is also a singlet line at $\delta=3$. This corresponds to the \mathbf{H} in $\mathbf{O C H}_{3}$.
c. Coupling constants

Note: $J=$ (difference in two lines in ppm) \times (Instrument frequency) Geminal coupling < cis-vicinal coupling < trans-vicinal coupling
d.

Peak positions in Hz (for $\mathbf{4 0 0} \mathbf{~ M H z ~ i n s t r u m e n t) ~}$	Peak positions in Hz (for $\mathbf{6 0 0} \mathbf{~ M H z ~ i n s t r u m e n t) ~}$
2614	3921
2602	3903
2598	3897
2586	3879

e. Compound \mathbf{A} will react with malonic acid in the following manner

Meldrum's acid ($\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{4}$)

The structure of Meldrum's acid is consistent with the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and IR data. The peak in the IR spectrum at $1700-1800 \mathrm{~cm}^{-1}$ is because of the $\mathrm{C}=\mathrm{O}$ stretching. The presence of peaks only between $0-7 \delta$ in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum indicates that the compound doesn't have any acidic group like COOH or OH .

If compound B reacts, the only possibility is that it will add across the double bond giving a product with molecular formula equal to $\mathbf{C}_{6} \mathbf{H}_{10} \mathbf{O}_{5}$. This molecular formula does not match with the one stated in the problem.

Compound B
 Malonic Acid

f. The increased acidity is due to active $-\mathrm{CH}_{2}$ group of Meldrum's acid flanked by two - CO groups. The carbanion formed at $-\mathrm{CH}_{2}$ will be stabilised by these -CO groups, which are coplanar.

Meldrum's acid ($\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{4}$)
g. The condensation product of Meldrum's acid with an aromatic aldehyde has the structure

18. Polymer synthesis

a.

b.

P

\qquad

Q

R

C.

p-xylene

dimethyl benzene-1,4-bis(acetate)
d. Three signals (three singlets for $-\mathrm{CH}_{3},-\mathrm{CH}_{2}$ and aromatic protons)
e. Structure of polymer

f.

g. With Glycerol (being a triol), cross-links between the polymer chains involving
the secondary hydroxyl group will form giving a three-dimensional network polymer is possible.

Glycerol

The polymer is unsuitable for drawing fibers because of its cross-linked, resinlike property.

19. Organic synthesis involving regioselection

a. The product obtained in the presence of catalyst HSbF_{6} is m-bromophenol. From the mass spectra given in the problem, direct bromination of phenol gives o / p-bromo derivatives as OH group present in phenol is o/p-directing.
b.

Compound B may undergo nucleophilic reaction at the carbon bearing bromine. Compound \mathbf{C} contains a carbanion and hence functions as a
nucleophile and will attack an electrophile. Thus, reactivity of \mathbf{B} is reversed on its conversion to \mathbf{C} (umpolung).
c.

Cyclohexanone

Tramadol
d.

Tramadol has two asymmetric carbon atoms. It has two pairs of enantiomers .

20. Carbon acids

a. The molecular formula of the keto ester is $\mathbf{C}_{5} \mathrm{H}_{8} \mathrm{O}_{3}$. Since \mathbf{X} and \mathbf{Y} are keto esters, they must have the following units-

This accounts for $\mathrm{C}_{4} \mathrm{O}_{3}$. The remaining part comprises of CH_{8}. Thus, only two types of ester groups are possible, methyl or ethyl.

For a methyl ester: $\mathbf{C H}_{3}$ will be a part of the ester moiety. This leaves CH_{5} to be attached.

For an ethyl ester: $\mathbf{C H}_{2} \mathbf{C H}_{3}$ will be a part of the ester group. Therefore H_{3} unit needs to be accounted for.

Therefore, possible structures of the keto esters are:

Structure I

Structure II

b. Reaction sequence for keto esters
*

Structure I

Keto acid ($\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$)

Keto acid ($\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$)
*

Keto acid ($\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$)

β - Keto acid

$\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}\right)$
 Structure II

β-Keto acid
$-\mathrm{CO}_{2}$

($\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}$)

- Structure I gives a keto acid with molecular formula $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$ which matches with the formula of the keto acid obtained from Y. \therefore Structure I is Y.
- Structure II gives a neutral compound with molecular formula $\mathbf{C}_{11} \mathbf{H}_{14} \mathbf{O}$ that matches with the molecular formula of the neutral acid stated for X. \therefore Structure II is \mathbf{X}.
- Structure III gives a keto acid with molecular formula $\mathbf{C}_{11} \mathbf{H}_{12} \mathbf{O}_{3}$ that also does not match with any given molecular formula.

Hence the two keto esters are :

Compound \mathbf{Y}
(Structure I)
α-keto ester

(Structure II)
β-keto ester
c. The β-keto ester gives on hydrolysis a β-keto acid. This acid readily undergoes decarboxylation involving a 6-membered transition state, giving a neutral product (Ketone).

d. i. When 1 equivalent of LDA is used compound \mathbf{X} produces a carbanion (monoanion) as shown below.

ii. Use of 2 equivalents of LDA leads to the formation of a dianion .

21. Amino acids and enzymes

a. The protonated amino group has an electron withdrawing effect. This enhances the release of proton from the neighboring -COOH , by stabilizing the conjugate base $-\mathrm{COO}^{-}$. This effect is greater when the $-\mathrm{COO}^{-}$is physically closer to $-\mathrm{NH}_{3}{ }^{+}$. As $-\mathrm{NH}_{3}{ }^{+}$group is present on the α-carbon, the effect is greater on $\alpha-\mathrm{COOH}$ than on the $\gamma-\mathrm{COOH}$. So the pKa value of α COOH is lower than that of $\gamma-\mathrm{COOH}$.
b. The ratio of ionized to unionized $\gamma-\mathrm{COOH}$ group is obtained by using Henderson-Hasselbalch equation,

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{COO}^{-}\right]}{[\mathrm{COOH}]}
$$

The $\mathrm{pH}=6.3$ and pKa of $\gamma-\mathrm{COOH}$ group is 4.3. Substituting these values in the above equation we get,

$$
\begin{aligned}
& 6.3=4.3+\log \frac{\left[\mathrm{COO}^{-}\right]}{[\mathrm{COOH}]} \\
& \therefore[\mathrm{COOH}]=\frac{100}{101}=0.99 \% \text { at } \mathrm{pH} 6.3
\end{aligned}
$$

c. Glutamic acid has two pKa values lower than 7.0 and one pKa value higher than 7.0. Thus, the isoelectric point (pl) for glutamic acid will lie between the two acidic pKa values.

$$
\mathrm{pl}=(2.2+4.3) / 2=3.25
$$

At $\mathrm{pH}=3.25$, net charge on glutamic acid will be zero since this pH coincides with pl of glutamic acid. Hence, glutamic acid will be stationary at pH 3.25.

