ACADÉMIE DE BORDEAUX*

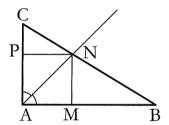
Etant donné un triangle ABC rectangle en A, on note : AB = c, AC = b, BC = a. On veut construire deux carrés inscrits dans ce triangle : le premier ayant A pour sommet, le second ayant un côté porté par l'hypoténuse.

- 1- Expliquer pour chacun d'eux comment réaliser la construction.
- 2- Exprimer les côtés x et y de ces deux carrés en fonction de b et c puis comparer leur aire.

Solution 1

Pour le premier carré AMNP, plusieurs méthodes sont rapides : Thalès ou la bissectrice ; dans tous les cas on obtient comme longueur du côté AM :

$$x = \frac{bc}{b+c} \, .$$



Pour le deuxième carré M'N'P'Q' on peut utiliser l'homothétie de centre A qui transforme le carré B'CB'C'. en le carré M'N'P'Q'. (figure page suivante)

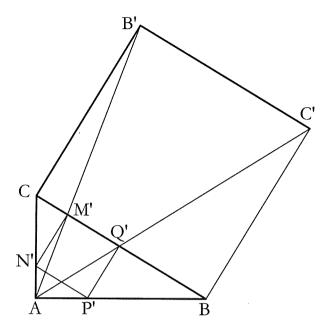
On obtient alors comme longueur du côté M'N' : $y = \frac{bc\sqrt{b^2 + c^2}}{bc + b^2 + c^2}$

On peut alors comparer les aires des deux carrés ; on calcule x^2 - y^2 et, après

calculs, on trouve :
$$x^2 - y^2 = \frac{b^4 c^4}{(b+c)^2 (b^2 + bc + c^2)^2}$$

ceci étant toujours positif, c'est le premier carré qui a la plus grande aire.

^{*} N.D.L.R. L'exercice proposé s'apparente, pour la situation de base, à l'un des exercices d'un rallye mathématique d'Alsace (Cf. revue *L'Ouvert* n° 103, 2001) : il s'agissait alors, connaissant les aires des deux carrés, de calculer la somme des côtés de l'angle droit.



A propos de cet exercice, un seul élève a su calculer y et donc comparer x^2 et y^2 ; par contre, il n'a pas su expliquer la construction. Pour le calcul de y il a utilisé les triangles semblables CN'M', N'P'A et P'B O'.

Beaucoup d'élèves ont su expliquer la construction du premier carré; ils ont tous utilisé la bissectrice et ils ont souvent su en déduire x.

Solution 2, par Abderrahim OUARDINI

- 1°) a) Construction du premier carré: l'auteur explicite l'utilisation de la bissectrice.
- b) Construction du second carré: l'auteur explicite la construction à partir d'un carré BCB'C'.
- c) Il remarque que, dans a) et b) le problème admet une et une seule solution.

2°) Calcul de x

Exprimons que l'aire du triangle ABC est égale à la somme des aires des deux triangles PNC, MBN et celle du carré AMNP. On a :

$$\frac{bc}{2} = \frac{(b-x)x}{2} + \frac{(c-x)x}{2} + x^2,$$

d'où, après résolution : $x = \frac{bc}{b+c}$.

b) Calcul de y.

On a:

aire(ABC) = aire(AP'N') + aire(P'BQ') + aire (N'M'C) + aire(N'P'Q'M'), les triangles AP'N' et ABC sont semblables, donc :

aire (AP'N') = aire (ABC)
$$\left(\frac{y}{a}\right)^2$$
,

les triangles P'BQ' et N'M'C ont la même hauteur, donc :

aire (P'BQ') + aire (N'M'C) =
$$\frac{1}{2}y$$
 (CM' + Q'B),

en remarquant que CM' + Q'B = a - y, la première égalité peut s'écrire :

$$\frac{bc}{2} = \frac{bc}{2} \left(\frac{y}{a}\right)^2 + \frac{1}{2}y(a-y) + y^2,$$

soit, après réduction, $(bc + a^2)y^2 + a^3y - a^2bc = 0$, équation du second degré en y de discriminant :

$$\Delta = a^2 \left(a^4 + 4bc \left(bc + a^2 \right) \right) = \left(b^2 + c^2 \right) \left(b^2 + c^2 + 2bc \right)^2$$
$$= \left(b^2 + c^2 \right) \left(b + c \right)^4 > 0,$$

et ayant pour racine positive:

$$y = \frac{-a^3 + (b+c)^2 \sqrt{b^2 + c^2}}{2(bc+b^2 + c^2)} = \frac{-(b^2 + c^2)\sqrt{b^2 + c^2} + (b+c)^2 \sqrt{b^2 + c^2}}{2(bc+b^2 + c^2)}$$
$$= \frac{bc\sqrt{b^2 + c^2}}{bc+b^2 + c^2}.$$

Donc, pour comparer l'aire de ces deux carrés, il suffit de calculer $x^2 - y^2$, et de constater que c'est un réel strictement positif.

Solution 3 et 4 avec un énoncé « allégé »

L'énoncé faisait une quasi-obligation, pour comparer les aires, de calculer d'abord les mesures des côtés des deux carrés (sinon on perdait le bénéfice du travail déjà fait).

Voici deux méthodes, originales semble-t-il, de comparaison des aires des carrés sans calcul préalable de x et y :

Solution 3, par Abderrahim OUARDINI

Les deux triangles MBN et O'BP' d'une part, CPN et CM'N' d'autre part, sont semblables, donc:

$$\frac{\operatorname{aire}(MBN)}{\operatorname{aire}(Q'BP')} = \left(\frac{x}{y}\right)^2 \text{ et } \frac{\operatorname{aire}(CPN)}{\operatorname{aire}(CM'N')} = \left(\frac{x}{y}\right)^2,$$

Remarquons que:

aire(ABC) = aire(P'BQ') + aire(CN'M') + aire(P'Q'M'N') + aire (AP'N'), donc, en combinant ces trois égalités, on obtient :

aire(ABC) =
$$\left(\frac{y}{x}\right)^2$$
 (aire(MBN) + aire(CPN)) + y^2 + aire(AP'N')
= $\left(\frac{y}{x}\right)^2$ (aire(MBN) + aire(CPN) + x^2) + aire(AP'N')
= $\left(\frac{y}{x}\right)^2$ aire(ABC) + aire(AP'N'),
aire(AP'N') = $\left(1 - \left(\frac{y}{x}\right)^2\right)$ aire(ABC),

d'où

ceci prouve que x > y.

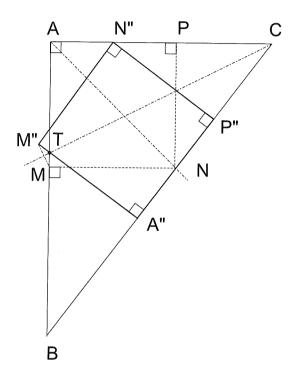
A. OUARDINI donne une bibliographie:

- [1] Equipe de l'IREM d'Aquitaine: « Interventions des lieux dans des problèmes de construction » (voir les pages 71-86 de « Repères » n° 40).
- [2] P. Guyot: « Un carré dans un triangle » 'pages 41-58 de « Repères » n°
- [3] H. Lebesque: « Leçons sur les constructions géométriques » 1950-
- [4] A. Ouardini: « Mathématiques de compétition: 112 problèmes corrigés » -Ed. Ellipses -2000 – (voir page 82).

Mais dommage qu'il oublie le BULLETIN APMEP n°441, lequel donne en ses pages 433 à 440 une passionnante étude de Daniel REISZ, beaucoup plus riche et complète, dont nous préciserons le plan à la fin des textes concernant l'Académie de Bordeaux (page...)

Solution 4, par Henri BAREIL

Pour comparer les deux carrés, partons de l'un, par exemple, de AMNP (cf. figure 1 de la « solution ») et symétrisons-le par rapport à la bissectrice Δ de \hat{C} (versus : celle de \hat{B}).



AMNP → A"M"N"P", carré qui, de par sa construction, remplit trois des contraintes imposées à A'M'N'P' (cf. figure 2 de la « solution »):

A" et P" sur [BC], N" sur [AC].

Mais M" semble extérieur au triangle ABC. Etudions-le :

Soit T l'intersection de [AB] et de la bissectrice de \hat{C} .

$$\frac{\text{TA}}{\text{TB}} = \frac{\text{AC}}{\text{BC}} \qquad (1)$$

D'autre part $\frac{MA}{MB} = \frac{NP}{MB} = \frac{NC}{NB}$ et, N étant, sur [BC], le pied de la bissectrice de \hat{A} ,

$$\frac{MA}{MB} = \frac{AC}{AB}$$
 (2)

Confrontons (1) et (2):

Comme BC > AC, $\frac{TA}{TB} < \frac{MA}{MB}$, donc T est sur [MA] et M", symétrique de

M par rapport à Δ, est bien extérieur au triangle ABC.

Le carré M'N'P'Q' (cf. figure 2 de la 1ère solution) est l'homothétique de M"N"P"Q" dans l'homothétie de centre C qui envoie M" sur [AB], donc de rapport inférieur à 1.

Il s'ensuit que aire(MNPA) < aire(M'N'P'Q').

Remarque sur la construction du carré M'N'P'Q'

Sa construction par l'homothétie de centre A, à partir du carré BCB'C' est excellente et ... économique.

- •Observons cependant la possibilité d'utiliser tout autre carré construit sur [B"C"] parallèle à [BC], avec B" sur [AB], C" sur [AC], ce carré et A étant de part et d'autre de (B" C"). Par une homothétie de centre A, ce carré-là donne, lui aussi, le carré cherché. Le choix de [B"C"] confondu avec [BC] permet une simplification des tracés.
- •D'autre part, la solution 4 montre, incidemment, une autre façon d'obtenir M'N'P'Q' en éliminant (provisoirement) non pas la contrainte [M'Q'] sur [BC] mais la contrainte P' sur [AB] ou (exclusif) N' sur [AC]. Dans ma rédaction, j'ai abandonné la dernière contrainte, ensuite récupérée par une homothétie de centre C.

Solution 5, par François LO JACOMO

3. Les triangles MBN et PCN sont semblables au triangle ABC, mais dans MBN, MN, de longueur x, est homologue à AC, de longueur b, alors que dans PNC, PN, de longueur x est homologue à AB, de longueur c, de sorte que l'aire du triangle ABC vaut :

$$\left(\left(\frac{x}{b}\right)^{2} + \left(\frac{x}{c}\right)^{2}\right) \times \text{aire (ABC)} + x^{2}$$

$$\frac{1}{x^{2}} = \frac{1}{b^{2}} + \frac{1}{c^{2}} + \frac{2}{bc} = \frac{\left(b+c\right)^{2}}{b^{2}c^{2}}$$
soit
$$x = \frac{bc}{b+c}.$$

De même, les triangles AP'N', Q'BP', M'N'C sont tous trois semblables au triangle ABC, mais le côté de longueur y est soit le grand, soit le petit côté de l'angle droit, soit l'hypoténuse, si bien que l'aire du triangle ABC vaut :

$$\left(\left(\frac{y}{a} \right)^2 + \left(\frac{y}{b} \right)^2 + \left(\frac{y}{c} \right)^2 \right) \times \frac{bc}{2} + y^2,$$

$$\frac{1}{y^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{2}{bc} = \frac{b^2c^2 + a^2\left(c^2 + b^2\right) + 2bca^2}{a^2b^2c^2}$$

$$= \frac{\left(bc + a^2\right)^2}{a^2b^2c^2}$$

soit

$$y = \frac{abc}{bc + a^2}.$$

Il est clair, sans aucun calcul, que $\frac{1}{v^2} > \frac{1}{x^2}$, donc $y^2 < x^2$.

Déroulement des épreuves, palmarès.

115 présents cette année. Stabilisation par rapport à l'année dernière.

Voici le palmarès de l'Académie :

Premier prix:

Yin LIU Lycée Montaigne Bordeaux

Puis neuf lauréats dont voici les deux premiers :

• Julien CHARREL

Lycée André Malraux

Biarritz

• Florence HANSER

Lycée privé Immaculée Conception

Pau

ANNEXE

Plan de l'ÉTUDE DE DANIEL REISZ

Bulletin APMEP n° 441, pages 433 – 400:

1 et 2 : Etude des deux carrés ;

3 : Comparaison des deux aires :

- par différence
- par quotient.

Daniel Reisz étudie alors, par la dérivée, la variation de celui-ci, fonction de $\frac{c}{b}$, donc de « la forme » du triangle rectangle. Il établit que le quotient Q est tel que $1 < Q \le 1,125$ et que la plus grande « différence » des aires correspond à AB = AC.

4 : Généralisation (très belle et accessible !) à ABC acutangle ...

... Où l'on établit que les aires des trois carrés « inscrits » sont dans l'ordre inverse des longueurs des côtés supportant un côté du carré.