OLYMPIADES ACADEMIQUES DE MATHEMATIQUES SESSION 2014

Mercredi 19 mars 2014 8h00-12h00

SUJET PREMIERE ES / L / ST2S / STMG

Ce sujet comporte 8 pages numérotées de 1 à 8

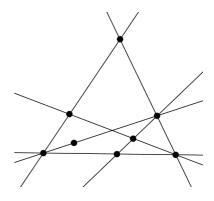
Exercice National 1 : Figures équilibrées

La figure ci-contre est constituée d'un ensemble de droites (ici, 6 droites) et de points marqués (ici, 8 points).

Elle possède la propriété suivante :

Sur chacune de ces droites, il y a exactement trois points marqués.

Une figure vérifiant cette propriété est dite équilibrée.

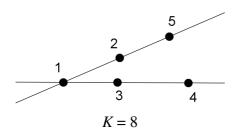


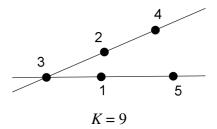
- 1. Construire une figure équilibrée constituée :
 - a) de 7 points marqués et 5 droites;
 - b) de 9 points marqués et 8 droites.

Dans la suite, on considère une figure équilibrée comportant p points marqués qu'on a numérotés par les entiers de 1 à p.

Cette numérotation est alors dite magique s'il existe un entier K, tel que la somme des trois entiers (correspondant à la numérotation des points marqués) de chaque droite de la figure est égale à K. Cet entier K est appelé constante magique de la numérotation.

2. Voici par exemple une figure équilibrée (avec 2 droites et 5 points marqués) ayant plusieurs numérotations magiques :



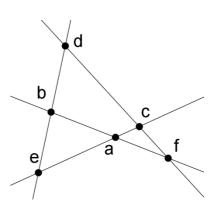


Trouver une numérotation de cette figure qui ne soit pas magique.

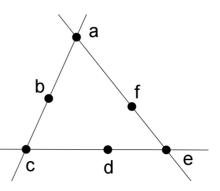
Trouver une numérotation magique de cette figure dont la constante magique n'est ni 8 ni 9.

- **3.** La figure équilibrée ci-contre est constituée de 6 points et 4 droites. Les entiers 1, 2, 3, 4, 5, 6, affectés aux points marqués dans un certain ordre, sont notés *a*, *b*, *c*, *d*, *e*, *f* sur la figure.
 - a) Démontrer que si la figure est magique, de constante magique K, alors $4 \times K = 42$.
 - b) Peut-on trouver une numérotation magique de cette figure ?

Si oui, la donner; si non, expliquer pourquoi.

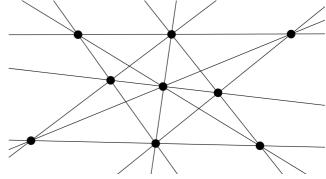


- **4.** La figure équilibrée ci-contre est constituée de 6 points et 3 droites. Les entiers 1, 2, 3, 4, 5, 6, affectés aux points marqués dans un certain ordre, sont notés à nouveau *a*, *b*, *c*, *d*, *e*, *f* sur la figure.
 - a) Démontrer que a + c + e est compris entre 6 et 15.
 - b) Démontrer que si la numérotation de cette figure est magique, de constante K, alors a + c + e = 3(K 7).
 - c) Déterminer la(les) constante(s) magique(s) pour cette figure.



5. La figure équilibrée ci-contre est constituée de 9 points et 10 droites.

Cette figure admet-elle une numérotation magique ?



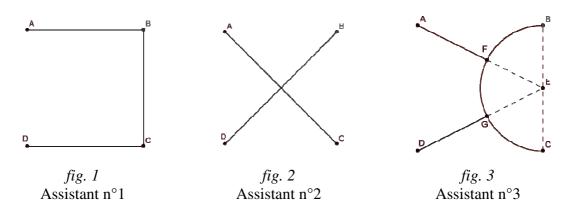
Exercice National 2 : Le plus court possible

Quatre villes – Alençon, Bélançon, Célançon et Délançon – sont situées aux quatre sommets d'un carré dont le côté mesure 100 km.

La Direction Départementale de l'Équipement souhaite les relier les unes aux autres par le réseau routier le plus court possible.

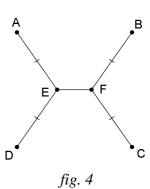
Partie A

- « On pourrait construire des routes allant d'Alençon à Bélançon, puis Célançon, puis Délançon » dit l'assistant n°1.
- « Ou alors, on pourrait construire deux routes diagonales : une d'Alençon à Célançon et l'autre de Délançon à Bélançon » propose l'assistant n°2.
- « Et pourquoi pas, construire une route semi-circulaire complétée par deux segments ? » propose l'assistant n°3.



- 1. Quel assistant propose le réseau routier le plus court ?
- 2. Un mathématicien qui était présent propose une autre solution :
 - « On pourrait relier Alençon et Délançon par un triangle isocèle (triangle AED de la fig. 4), puis Bélançon et Célançon par un triangle isocèle de même forme (triangle BFC) et relier les deux sommets E et F comme le suggère la figure ci-contre » :

Si EF = 20 km, le réseau routier envisagé sur la figure 4 est-il plus court que ceux proposés par les assistants ?



Partie B

Dans cette partie, on souhaite prouver que le réseau routier le plus court est effectivement du modèle proposé par le mathématicien. On cherchera par la suite la longueur EF qui réalise ce plus court chemin.

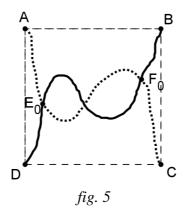
Rappels de géométrie :

Si A, B, C sont trois points du plan, en notant AB la distance entre A et B: on a toujours $AB + BC \ge AC$; on a l'égalité AB + BC = AC si, et seulement si, B appartient au segment [AC].

On admettra aussi que si on trace une courbe quelconque entre A et B, la longueur de la courbe est toujours supérieure ou égale à la longueur du segment [AB] (le plus court chemin étant la ligne droite).

1. Revenons à notre réseau routier.

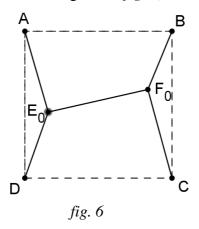
On admettra qu'on peut sans restreindre la généralité supposer que le réseau solution est formé de deux courbes joignant les sommets opposés (A et C d'une part, B et D d'autre part), et que ces courbes sont à l'intérieur du carré de 100km de coté, comme dans le dessin suivant.



On considère un réseau formé de deux courbes comme sur la figure 5.

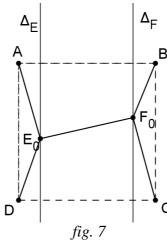
En parcourant la route entre Alençon et Célançon en partant d'Alençon, on appelle E_0 le premier point d'intersection rencontré et F_0 le dernier point d'intersection rencontré (ces deux points pouvant être confondus). (fig. 5).

Montrer qu'alors la longueur du réseau de la fig. 5 est supérieure ou égale à celle du réseau suivant, constitué de segments (fig. 6).



Sujet ES-L-STSS-STMG Page 5 sur 8

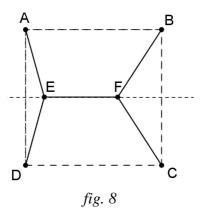
2. On considère les droites Δ_E et Δ_F , parallèles à (AD) passant par E_0 et F_0 (voir figure 7 ci-dessous).



a. Déterminer le point E de Δ_E tel que la somme des distances DE + EA soit minimale.

On appelle F le point trouvé en faisant le même raisonnement pour F₀.

- b. Montrer que $EF \le E_0F_0$.
- c. Déduire de ce qui précède que le réseau recherché est nécessairement de la forme suivante où E et F sont sur la médiatrice du segment [AD] (fig. 8).



- **3.** On admettra que dans le réseau recherché, les points E et F doivent être de part et d'autre de la médiatrice de [AB].
 - a. Justifier que le réseau recherché doit être symétrique par rapport à la médiatrice de [AB].
 - b. D'après ce qui précède, le réseau recherché a donc la même forme que celui que proposait le mathématicien (*fig. 4*). Pouvez-vous l'aider à déterminer la longueur EF pour laquelle ce type de réseau routier sera le plus court possible ?
 - c. Quelle est alors la valeur de l'angle DEA ?

Exercice Académique 1

Norman a inventé une machine à transformer les nombres. Cette machine ne reconnaît que les nombres entiers positifs dont l'écriture ne comporte aucun zéro.

Si M et N sont deux nombres entiers positifs, on note MN le nombre obtenu en écrivant dans l'ordre d'abord les chiffres de l'écriture de M, puis à la suite ceux de l'écriture de N.

Ainsi, si M désigne 28 et N désigne le nombre 473, alors MN représente le nombre 28473.

Par ailleurs, les nombres de la forme X2X jouant par la suite un rôle particulier, Leonard a appelé le nombre X2X *l'associé* de X.

Ainsi, *l'associé* de 3 est 323 et *l'associé* du nombre 528 est 5282528.

La machine fonctionne uniquement avec une certaine catégorie de nombres qui sont appelés les nombres *acceptables*.

Lorsque que l'on introduit un nombre X *acceptable* dans la machine, il en ressort un certain nombre Y. On dit alors que X *donne* Y.

La machine fonctionne en obéissant à deux règles :

Règle 1 : Pour tout nombre X, le nombre noté 2X, formé du chiffre 2 suivi des chiffres de X, est acceptable et il donne X.

Par exemple, 253 donne 53, et 25674 donne 5674.

Règle 2 : Si X est un nombre acceptable qui donne Y, alors 3X est acceptable et il donne l'associé de Y.

Par exemple, d'après la première règle, 27 acceptable et donne 7. Ainsi, par la seconde règle, 327 est acceptable et donne 727.

- 1. En utilisant la même méthode, trouver ce que donne 2586, puis 32586.
- 2. En déduire ce que donne un nombre de la forme 32X.
- 3. Montrer que 3327 donne 7272727.
- 4. Que donne 33327 ? Que donne 333259 ?
- 6. J'entre un nombre dans la machine. Il en ressort 48248248248. Quel nombre ai-je entré ?
- 5. Que donne 33...332X, si l'on suppose qu'il y a n fois le chiffre 3 ? (On pourra commencer par étudier les cas n = 1, n = 2, n = 3, ...)

Tous les nombres acceptables commencent par 2 ou 3, mais il existe certains nombres commençant par 2 ou 3 qui ne sont pas acceptables. Par exemple, 2 ne l'est pas, mais c'est le seul nombre commençant par 2 à ne pas l'être. Un nombre qui s'écrit comme une succession de 3 n'est pas acceptable non plus, pas plus que 32, ou 332, ou une succession de 3 suivie de 2.

En revanche, quel que soit X, les nombres 2X, 32X, 332X, et plus généralement une succession de 3 suivie de 2X avec X quelconque, sont acceptables. Ce sont les seuls.

- 7. Il existe un seul nombre qui se donne lui-même. Quel est ce nombre ? Expliquer.
- 8. Peut-on trouver un nombre N qui donne 7N?

Exercice Académique 2

- 1) Calculer, pour tout entier naturel n supérieur ou égal à 2 : $\left(1 + \frac{1}{n-1}\right)\left(1 \frac{1}{n}\right)$.
- 2) En vous aidant du résultat précédent, calculer le produit suivant sans utiliser la calculatrice :

$$\left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \left(1 - \frac{1}{4^2}\right) \dots \left(1 - \frac{1}{2014^2}\right)$$