

MATHÉMATIQUES & PHYSIQUE-CHIMIE

Epreuves du Mardi 30 avril 2019

Le sujet comporte ce livret d'énoncés et deux livrets « document réponses », l'un en Mathématiques, l'autre en Physique-Chimie.

Vous devez:

- Lire et appliquer les consignes listées sur les documents réponses
- Ecrire vos réponses dans les cadres prédéfinis.

Nous vous conseillons de répartir équitablement les 3 h d'épreuves entre les sujets de Mathématiques et de Physique-Chimie.

L'usage d'une calculatrice est autorisé.

Tout échange de calculatrices entre candidats, pour quelque raison que ce soit, est interdit. Aucun document n'est autorisé.

L'usage d'un téléphone ou de tout objet communiquant est interdit.

Le sujet de PHYSIQUE-CHIMIE est composé de 4 exercices (pages 2 à 5).

La durée conseillée pour ce sujet est de 1h30.

Vous ne devez traiter que 3 exercices sur les 4 proposés. Si vous traitez les 4 exercices, seules seront retenues les 3 meilleures notes.

Chaque exercice est noté sur 20 points. Le sujet est donc noté sur 60 points.

Le sujet de MATHÉMATIQUES est composé de 4 exercices (pages 6 à 9).

La durée conseillée pour ce sujet est de 1h30.

Vous ne devez traiter que 3 exercices sur les 4 proposés. Si vous traitez les 4 exercices, seules seront retenues les 3 meilleures notes.

Chaque exercice est noté sur 20 points. Le sujet est donc noté sur 60 points.

Chaque exercice contient des questions à choix multiples. Elles sont signalées par la mention QCM. Pour chaque QCM, quatre réponses sont proposées et il peut y avoir une ou plusieurs bonnes réponses. Vous entourerez la (ou les) réponse(s) choisie(s) sur la feuille de réponses. Aucune justification n'est demandée. Une réponse fausse sera pénalisée. Aucun point n'est enlevé en l'absence de réponse.

Mathématiques - EXERCICE I

I-1-**OCM**

Quel est l'ensemble *E* des réels *x* vérifiant $1 - \ln x \ge 0$?

A)
$$E = [1; +\infty[$$

B)
$$E = [e; +\infty[$$

C)
$$E =]-\infty; e]$$

D)
$$E = [0; e]$$

Le plan \mathcal{P} est rapporté à un repère orthonormé $(0, \vec{\iota}, \vec{\jmath})$.

On considère les fonctions f et g définies par :

pour tout réel
$$x > 0$$
, $f(x) = e^{\frac{\ln x}{x}}$ et $g(x) = \frac{\ln x}{x}$

On note C_f la courbe représentative de f dans le plan \mathcal{P} .

- I-2-Déterminer $\lim_{x \to +\infty} f(x)$. Justifier la réponse.
- I-3-On en déduit que C_f admet une asymptote Δ . Donner une équation de Δ .
- I-4-Déterminer $\lim_{x\to 0^+} f(x)$. Justifier la réponse.
- g' désigne la dérivée de g. Calculer, pour tout x > 0, g'(x). Détailler le calcul. I-5-
- f' désigne la dérivée de f. Pour tout x > 0, on peut écrire f'(x) sous la forme : I-6-

$$f'(x) = (1 - \ln x) h(x)$$

Donner l'expression de h(x) en fonction de x. Quel est le signe de h(x)?

- I-7-Dresser le tableau des variations de f sur $]0; +\infty[$.
- **I-8** Soit *A* le point de C_f d'abscisse $x_A = e$ et d'ordonnée y_A . Donner la valeur exacte de y_A , puis une valeur approchée de y_A à 10^{-1} près.

I-9-QCM

Soit *B* le point de C_f d'abscisse $x_B = 1$. T_B désigne la tangente à C_f au point *B*. Parmi les affirmations suivantes, lesquelles sont vraies?

- T_B a pour équation y = x e
- B) T_B a pour équation y = e xD) T_B passe par le point O
- T_B a pour équation y = xC)

I-10-

Soit C le point de C_f d'abscisse $x_C = \frac{1}{2}$ et d'ordonnée y_C . Que vaut y_C ?

A)
$$y_C = \frac{1}{4}$$

C) $y_C = e^{\frac{\ln 2}{2}}$

B)
$$y_C = e^{\frac{1}{2}\ln{\frac{1}{2}}}$$

D) $y_C = e^{-2\ln{2}}$

C)
$$v_C = e^{\frac{\ln 2}{2}}$$

D)
$$y_C = e^{-2 \ln 2}$$

I-11-Placer, sur la figure, les points *A*, *B* et *C*.

Tracer la droite Δ , la tangente T_B , la tangente à C_f au point A. Puis tracer la courbe C_f .

I-12-**VRAI-FAUX**

Soit m un réel. On s'intéresse au nombre de réels x > 0 vérifiant l'équation :

$$f(x) = m$$

Pour chacune des trois assertions suivantes, indiquer si elle est vraie ou fausse.

Aucune justification n'est demandée. Une réponse incorrecte sera pénalisée, une absence de réponse ne sera pas pénalisée.

- Si $m \in \]1$; $y_A[$, l'équation a exactement deux solutions A)
- Si m < 0 ou $m \ge y_A$, l'équation n'admet aucune solution B)
- Si m = 1, l'équation a exactement deux solutions C)

Mathématiques - EXERCICE II

Les deux parties sont indépendantes.

Première partie - QCM

II -1-Lors d'une même expérience aléatoire, deux événements A et B vérifient :

$$P(A) = 0.4$$

$$P(B) = 0.6$$

$$P(A \cap \bar{B}) = 0.3$$

Parmi les assertions suivantes, lesquelles sont vraies?

A)
$$P(A \cap B) = 0.1$$

B)
$$P(A \cap B) = 0.24$$

C)
$$P(A \cup B) = 1$$

D)
$$P(A \cup B) = 0.9$$

X désigne une variable aléatoire suivant la loi uniforme sur l'intervalle [3 ; 18]. II -2-Soit p_1 la probabilité que X soit compris entre 5 et 10 sachant que X est strictement supérieur à 4. Que vaut p_1 ?

A)
$$p_1 = \frac{4}{1}$$

B)
$$p_1 = \frac{5}{13}$$

D) $p_1 = \frac{1}{3}$

A)
$$p_1 = \frac{4}{15}$$

C) $p_1 = \frac{5}{14}$

$$p_1 = \frac{1}{3}$$

Soit $\lambda > 0$. X désigne une variable aléatoire suivant la loi exponentielle de paramètre λ . II -3-Soit p_2 la probabilité que X soit compris entre 2 et 5. Que vaut p_2 ?

$$\mathbf{A)} \qquad p_2 = \frac{e^{-2\lambda}}{e^{-5\lambda}}$$

$$\mathbf{B)} \qquad p_2 = e^{-3\lambda}$$

$$p_2 = e^{-2\lambda} - e^{-5\lambda}$$

$$\mathbf{D)} \quad p_2 = e^{-5\lambda} - e^{-2\lambda}$$

Soit $\lambda > 0$. X désigne une variable aléatoire suivant la loi exponentielle de paramètre λ . II -4-Soit p_3 la probabilité que X soit supérieure à son espérance E(X). Que vaut p_3 ?

A)
$$p_3 = \frac{1}{e}$$

B)
$$p_3 = \frac{1}{2}$$

D) $p_3 = e^{-\lambda^2}$

C)
$$p_3 = 1 - \frac{1}{e}$$

$$\mathbf{D)} \quad p_3 = e^{-\lambda^2}$$

Deuxième partie

Soit n un entier naturel non nul. Pour un jeu de dé, qui se joue en n parties, on utilise un seul dé non pipé à six faces. On suppose que les résultats des parties successives sont indépendants. Lors d'une partie, le joueur lance le dé.

- S'il obtient un chiffre pair, alors il reçoit autant d'euros que le nombre apparu sur le dé.
- S'il obtient un chiffre impair, alors il perd *m* euros, *m* désignant un réel positif.

On note G_n la variable aléatoire correspondant au gain du joueur lors de la n-ième partie. Ce gain est donc positif ou négatif.

On suppose que le joueur décide de faire une seule partie.

- II -5-Compléter le tableau donnant la loi de G_1 .
- II -6-Donner la probabilité P_1 que le joueur ait un gain positif.
- Donner, en fonction de m, la valeur de l'espérance $E(G_1)$. Détailler le calcul. II -7-
- II -8-Pour quelles valeurs de m a-t-on $E(G_1) \ge 0$?

Dans la question suivante, on suppose que le joueur joue successivement deux parties et que m=4.

II -9-On note $G_T = G_1 + G_2$ la variable aléatoire correspondant au gain total du joueur à l'issue des deux parties. Calculer la probabilité P_2 que le joueur ait un gain total nul. Détailler le calcul.

Dans la suite, *n* est quelconque.

- II -10-Soit *X* la variable aléatoire égale au nombre de parties où le joueur a un gain positif. Donner la loi de X. Préciser ses paramètres.
- II -11-Notons q_n la probabilité que le joueur ait un gain positif à au moins une des n parties. Donner l'expression de q_n en fonction de n.
- Déterminer le nombre minimal n_0 de parties que le joueur doit faire pour que la probabilité II -12précédente soit strictement supérieure à 0,99. Détailler les calculs.

Mathématiques - EXERCICE III

La première question est indépendante.

III-1-**VRAI-FAUX**

On considère, dans l'espace, deux droites \mathcal{D} et \mathcal{D}' et deux plans \mathcal{P} et \mathcal{P}' .

Pour chacune des assertions suivantes, indiquer si elle est vraie ou fausse. Aucune justification n'est demandée. Une réponse incorrecte sera pénalisée, une absence de réponse ne sera pas pénalisée.

- Si \mathcal{D} et \mathcal{D}' ne sont pas parallèles, alors elles sont sécantes.
- Si \mathcal{D} et \mathcal{D}' sont sécantes, alors elles sont coplanaires. B)
- Si \mathcal{D} est orthogonale à \mathcal{P} , alors elle est orthogonale à toute droite contenue dans \mathcal{P} . C)
- Si \mathcal{P} et \mathcal{P}' sont parallèles, alors toute droite de \mathcal{P} est parallèle à toute droite de \mathcal{P}' .

Dans l'espace rapporté à un repère orthonormé $(0, \overrightarrow{\iota}, \overrightarrow{\jmath}, \overrightarrow{k})$, on considère :

• les points *A*, *B* et *C* de coordonnées respectives :

$$A(1;1;1)$$
 $B(1;1;\frac{3}{2})$ $C(2;1;1)$

- le plan \mathcal{P} d'équation cartésienne : x y + 2z 3 = 0.
- III-2-Parmi les points A, B et C, lesquels appartiennent au plan \mathcal{P} ?
- III-3-

Parmi les vecteurs suivants, lesquels sont normaux au plan \mathcal{P} ?

A)
$$\overrightarrow{n_1}(2;0;-1)$$

B)
$$\overrightarrow{n_2}$$
 (-1; 2; -3)

C)
$$\overrightarrow{n_3}$$
 (1; -1; 2)

D)
$$\overrightarrow{n_4}$$
 (-2; 2; -4)

Soit \mathcal{D} la droite passant par le point A et orthogonale au plan \mathcal{P} . **III-4**-

Donner un système d'équations paramétriques de la droite \mathcal{D} .

III-5-Soit K le projeté orthogonal du point A sur le plan \mathcal{P} .

Déterminer les coordonnées $(x_K; y_K; z_K)$ du point K. Justifier la réponse.

- Donner les coordonnées du vecteur \overrightarrow{BC} . III-6-
- III-7-Soit \mathcal{P}_1 le plan passant par le point A et orthogonal à la droite (BC).

Donner une équation cartésienne du plan \mathcal{P}_1 .

III-8-

Parmi les systèmes paramétriques suivants, lesquels représentent la droite (BC)?

A)
$$\begin{cases} x = 2 + 2k \\ y = 1 \\ z = 1 + k \end{cases}$$
, $k \in \mathbb{R}$

B)
$$\begin{cases} x = -2k \\ y = 1 \\ z = 2 + k \end{cases}, k \in \mathbb{R}$$

C)
$$\begin{cases} x = 1 + 2k \\ y = k \\ z = -\frac{1}{2} + k \end{cases}, k \in \mathbb{R}$$

A)
$$\begin{cases} x = 2 + 2k \\ y = 1 \\ z = 1 + k \end{cases}$$
, $k \in \mathbb{R}$ B)
$$\begin{cases} x = -2k \\ y = 1 \\ z = 2 + k \end{cases}$$
 $k \in \mathbb{R}$ C)
$$\begin{cases} x = 1 + 2k \\ y = k \\ z = -\frac{1}{2} + k \end{cases}$$
, $k \in \mathbb{R}$ D)
$$\begin{cases} x = 2 + 3k \\ y = 1 + 2k \\ z = 1 + 2k \end{cases}$$
, $k \in \mathbb{R}$

III-9-Soit *H* le projeté orthogonal du point *A* sur la droite (*BC*).

Donner les coordonnées $(x_H; y_H; z_H)$ du point H.

- Déterminer une équation du plan \mathcal{P}_2 passant par le point A et parallèle à $\mathcal{P}.$ Justifier la réponse. III-10-
- III-11-Calculer la distance d entre les plans \mathcal{P} et \mathcal{P}_2 . Détailler le calcul.
- III-12-**VRAI-FAUX**

Pour chacune des assertions suivantes concernant les positions relatives des droites (BC) et (HK), indiquer si elle est vraie ou fausse. Aucune justification n'est demandée. Une réponse incorrecte sera pénalisée, une absence de réponse ne sera pas pénalisée.

A) Elles sont sécantes

Elles sont parallèles B)

C) Elles sont orthogonales D) Elles sont coplanaires

Mathématiques - EXERCICE IV

Les trois parties sont indépendantes.

Dans tout l'exercice, a désigne un nombre réel strictement supérieur à 1.

Le plan complexe est rapporté à un repère orthonormé direct $(0, \overrightarrow{u}, \overrightarrow{v})$. Soient *A* et *B* les points d'affixes respectives :

$$z_A = 2 + 2 i \sqrt{a^2 - 1}$$
 et $z_B = 4$

On définit les points C, D, H par :

- C est le symétrique de A par rapport à l'axe $(0, \overrightarrow{u})$;
- *D* est le symétrique de *A* par rapport au point *O* ;
- H est le projeté orthogonal de B sur la droite (AD).

On note z_C , z_D et z_H les affixes respectives des points C, D et H.

Première partie

Dans cette partie, on suppose que $\alpha = 2$.

- IV-1-Écrire la forme algébrique de z_A . Donner son module $|z_A|$. Puis écrire la forme exponentielle de z_A .
- Donner la valeur de z_C sous forme algébrique et exponentielle. IV-2-
- IV-3-OCM

Parmi les expressions suivantes, laquelle correspond à la forme exponentielle de z_D ?

A)
$$z_D = 4 e^{-\frac{i\pi}{3}}$$

B)
$$z_D = -4 e^{\frac{i\pi}{3}}$$

D) $z_D = -4 e^{-\frac{2i\pi}{3}}$

C)
$$z_D = 4 e^{-\frac{2i\pi}{3}}$$

D)
$$z_D = -4 e^{-\frac{2i\pi}{3}}$$

IV-4-Sur la figure, placer les points *A*, *B*, *C*, *D*.

Faire apparaître la construction qui vous permet de placer les points correctement.

- Donner la nature précise du triangle *OAB* et du quadrilatère *ABCD*. IV-5-
- Justifier géométriquement que $z_H = \frac{1}{2}z_A$. En déduire la forme algébrique de z_H . IV-6-Placer le point *H* sur la figure de la question **IV-4-**
- IV-7-OCM

Soit \mathcal{A} l'aire, en unités d'aire, du quadrilatère ABCD. Quelle est la valeur exacte de \mathcal{A} ?

$$\mathbf{A)} \qquad \mathcal{A} = 24\sqrt{3}$$

B)
$$\mathcal{A} = 16\sqrt{3}$$

C)
$$\mathcal{A} = 12\sqrt{3}$$

$$\mathbf{D)} \qquad \mathcal{A} = 8\sqrt{3}$$

Dans la suite, a est quelconque

Deuxième partie

- IV-8-Notons ℓ_1 et ℓ_2 les longueurs respectives des diagonales [OB] et [AC] du losange OABC. Donner la valeur exacte de ℓ_1 . Donner une expression de ℓ_2 en fonction de a.
- IV-9-Pour quelle(s) valeur(s) de α le quadrilatère OABC est-il un carré ? Justifier la réponse.

Troisième partie

Soient (E) et (E') les équations d'inconnue complexe z:

$$(E): z^2 - 4z + 4a^2 = 0$$

$$(E): z^2 - 4z + 4a^2 = 0 (E'): z^3 - 4z^2 + 4a^2z = 0$$

- Justifier que l'équation (*E*) admet deux racines complexes non réelles. IV-10-
- On note z_1 et z_2 les deux solutions de l'équation (E). IV-11-Donner les expressions de z_1 et z_2 en fonction de a.
- En déduire l'ensemble \mathcal{E}' des solutions de l'équation (E'). IV-12-



