Corrigé succinct X-ens PSI 2014 par Christophe Hénocq

PARTIE 1

- a) Soit $f \in E$. Il est clair que la fonction T(f) définie dans l'énoncé appartient à E. On a, de plus, pour tout $x \in [0,1], \ |T(f)(x)| = x \left|f(\frac{x}{2})\right| \le \|f\|_{\infty}$. Donc $\|T(f)\|_{\infty} \le \|f\|_{\infty}$ et $T(f) \in \mathcal{L}(E)$.
- b) D'après ce qui précède, la valeur minimale possible de la constante M appartient à [0,1]. Mais, pour la fonction f constante égale à 1, on a $||T(f)||_{\infty} = ||f||_{\infty}$. On peut conclure que la valeur minimale cherchée est 1.
- c) \triangleright Si $f \in \text{Ker}(T)$, on a, pout tout $x \in [0,1]$, $xf(\frac{x}{2}) = 0$. On en déduit que f est nulle sur $[0,\frac{1}{2}]$, puis, par continuité en 0, sur $[0,\frac{1}{2}]$. Réciproquement, toute fonction $f \in E$, nulle sur $[0,\frac{1}{2}]$, vérifie T(f) = 0.
- \triangleright Si $g \in \text{Im}(T)$, il existe $f \in E$ telle que, pour tout $x \in [0,1]$, on a $g(x) = xf(\frac{x}{2})$. Sachant que f est continue en 0, on a lorsque $x \longrightarrow 0$, g(x) = xf(0) + o(x). On peut conclure que g(0) = 0 et que g est dérivable en 0. Réciproquement Si $g \in E$ vérifie g(0) = 0 et est dérivable en 0. On considère la fonction f définie sur [0,1]

$$\operatorname{par} f(x) = \begin{cases} g'(0) & \text{si } x = 0 \\ \frac{g(2x)}{2x} & \text{si } x \in]0, \frac{1}{2}] \text{. Il est facile de vérifier que } f \in E \text{ et que } T(f) = g. \end{cases}$$

- d) Soit $f \in E$. On a $||T(f)||_2^2 = \int_0^1 x^2 f(\frac{x}{2})^2 dx \le \int_0^1 f(\frac{x}{2})^2 dx = 2 \int_0^{\frac{1}{2}} f(t)^2 dt \le 2||f||_2^2$. On peut donc conclure que $||T(f)||_2 \le \sqrt{2}||f||_2$. Ainsi $T(f) \in \mathcal{L}(E)$.
- e) Notons μ la valeur minimale de la constante M recherchée. On a, d'après d), $\mu \leq \sqrt{2}$. On calcule ensuite $\|f_n\|_2^2$ et $\|T(f_n)\|_2^2$ pour la fonction f_n donnée dans l'énoncé.

$$\Rightarrow \text{Si } x \in \left[\frac{1}{2} - \frac{1}{n}, \frac{1}{2}\right], \ f_n(x) = n(x - \frac{1}{2} + \frac{1}{n}) \text{ et si } x \in \left[\frac{1}{2}, \frac{1}{2} + \frac{1}{n^2}\right], \ f_n(x) = n^2(x - \frac{1}{2} - \frac{1}{n^2}) \text{ On a alors}$$

$$||f_n||_2^2 = \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2}} n^2(x - \frac{1}{2} + \frac{1}{n})^2 dx + \int_{\frac{1}{2}}^{\frac{1}{2} + \frac{1}{n^2}} n^4(x - \frac{1}{2} - \frac{1}{n^2})^2 dx = \frac{1}{3n} \left(1 - \frac{1}{n}\right).$$

▷ Posons $g_n = T(f_n)$. Pour $x \in [1 - \frac{2}{n}, 1]$, $g_n(x) = x_n \left(\frac{x}{2} - \frac{1}{2} + \frac{1}{n}\right) g_n$ est nulle ailleurs. On a donc $\|g_n\|_2^2 = n^2 \int_{1-\frac{2}{n}}^1 x^2 \left(\frac{x}{2} - \frac{1}{2} + \frac{1}{n}\right)^2 dx = \frac{n^2}{4} \int_{1-\frac{2}{n}}^1 x^2 \left(x - 1 + \frac{2}{n}\right)^2 dx$. On peut faire une double intégration par parties : $\|g_n\|_2^2 = \frac{2}{3n} - \frac{n^2}{6} \int_{1-\frac{2}{n}}^1 x \left(x - 1 + \frac{2}{n}\right)^3 dx = \frac{2}{3n} - \frac{2}{3n^2} + \frac{n^2}{24} \int_{1-\frac{2}{n}}^1 x \left(x - 1 + \frac{2}{n}\right)^4 dx$. On trouve $\|g_n\|_2^2 = \frac{2}{3n} - \frac{2}{3n^2} + \frac{4}{15n^3}$. Lorsque $n \longrightarrow +\infty$, $\frac{\|g_n\|_2}{\|f_n\|_2} \longrightarrow \sqrt{2}$. Cela permet de conclure que $\mu = \sqrt{2}$

PARTIE 2

a) Soit
$$u \in H$$
. On a $||S(u)||_2^2 = \sum_{n=1}^{\infty} |u_{n-1}|^2 = ||u||_2^2$. Donc $S \in \mathcal{L}(H)$.

De même $||V(u)||_2^2 = \sum_{n=0}^{\infty} |u_{n+1}|^2 \le ||u||_2^2$. Donc $V \in \mathcal{L}(H)$.

b)

 \triangleright Cherchons le spectre ponctuel de S. Soient $\lambda \in \mathbf{R}$ et $u \in H$ tel que $S(u) = \lambda u$.

On a $0 = \lambda u_0, u_0 = \lambda u_1, ..., u_{n-1} = \lambda u_n, ...$ En séparant les cas $\lambda = 0$ et $\lambda \neq 0$, on voit que tous les termes de la suite u sont nuls. On peut conclure que $\sigma_P(S) = \emptyset$

- \triangleright Cherchons le spectre ponctuel de V. Soient $\lambda \in \mathbf{R}$ et $u \in H$ tel que $V(u) = \lambda u$. On a, pour tout $n \in \mathbf{N}$, $u_{n+1} = \lambda u_n$. Donc u est une suite géométrique de raison $\lambda : u_n = u_0 \lambda^n$. Mais elle doit être de carré sommable, donc u est la suite nulle ou $|\lambda| < 1$. On peut conclure que $\sigma_P(V) =]-1,1[$.
- c) Soit $u \in F$. On a $||S(u)||_{\infty} = ||u||_{\infty}$. Donc $S \in \mathcal{L}(F)$. De même on a $||V(u)||_{\infty} \le ||u||_{\infty}$. Donc $V \in \mathcal{L}(F)$.
- d) Pour S, il n'y a pas de changement : $\sigma_P(S) = \emptyset$. Pour V, on constate que la suite géométrique $(u_0\lambda^n)$, lorsque $u_0 \neq 0$, est bornée si et seulement si $|\lambda| \leq 1$. Donc $\sigma_P(V) = [-1, 1]$.

 \triangleright Spectre de S. Soit $\lambda \in \mathbf{R}$, l'application $S - \lambda Id_F$ est toujours injective. Est-elle surjective? Soit $v \in F$,

on cherche $u \in F$ tel que $S(u) - \lambda u = v$. Cela équivant au système $\begin{cases} 0 - \lambda u_0 = v_0 \\ u_0 - \lambda u_1 = v_1 \\ \dots \\ u_{n-1} - \lambda u_n = v_n \\ \dots \end{cases}$.

On voit que si $\lambda=0$ et si $v_0\neq 0,$ il n'y a pas de solution. Donc $0\in\sigma(S)$

Si $\lambda \neq 0$, on trouve $u_0 = -\frac{1}{\lambda}v_0$, $u_1 = -\left(\frac{1}{\lambda^2}v_0 + \frac{1}{\lambda}v_1\right)$, ..., $u_n = \sum_{k=0}^n \frac{v_{n-k}}{\lambda^{k+1}}$,.... La suite ainsi définie est-elle toujours bornée ? Si $|\lambda| > 1$, la réponse est oui car la série de terme général $\frac{1}{\lambda^{k+1}}$ converge.

Si $|\lambda| \le 1$ il en va autrement. En effet, en considérant la suite (v_n) définie par $v_n = \begin{cases} 1 & \text{si } \lambda > 0 \\ (-1)^n & \text{si } \lambda < 0 \end{cases}$ on a $|u_n| \ge n+1$. Ce n'est pas une suite bornée. Alors $S - \lambda Id_F$ n'est pas surjective. On conclut que $\sigma(S) = [-1,1]$.

 \triangleright Spectre de V. D'après d) $[-1,1] \subset \sigma(V)$. Soient λ tel que $|\lambda| > 1$ et $v \in F$. On cherche $u \in F$ tel que

 $S(u) - \lambda u = v. \text{ Cela \'equivaut au syst\`eme} \begin{cases} u_1 - \lambda u_0 = v_0 \\ u_2 - \lambda u_1 = v_1 \\ \dots \\ u_{n+1} - \lambda u_n = v_n \end{cases}.$

On trouve, pour $n \ge 1$, $u_n = \lambda^n u_0 + \sum_{k=0}^{n-1} \lambda^k v_{n-1-k}$. On choisit la suite v définie par $v_n = \begin{cases} 1 & \text{si } \lambda > 0 \\ (-1)^n & \text{si } \lambda < 0 \end{cases}$ La suite u précédente n'est, alors, pas borbée. On peut conclure $\sigma(V) = \mathbf{R}$.

PARTIE 3

a) Commençons par montrer que T est un endomorphisme de E. Soit $f \in E$. On a, pour $s \in [0,1]$, $T(f)(s) = \int_0^1 K(s,t)f(t)dt = (1-s)\int_0^s tf(t)dt + s\int_s^1 (1-t)f(t)dt$. On sait que les applications $t \longmapsto tf(t)$ et $t \longmapsto (1-t)f(t)$ sont continues sur [0,1]. Par application du théorème fondamental, les applications $s \longmapsto \int_0^s tf(t)dt$ et $s \longmapsto \int_s^1 (1-t)f(t)dt$ sont continues (et même dérivables) sur [0,1]. On a donc $T(f) \in E$. Par ailleurs, pour tout $(s,t) \in [0,1]^2$, on a $0 \le K(s,t) \le 1$.

On en déduit $|T(f)(s)| \leq \int_0^1 |f(t)| dt \leq \left(\int_0^1 dt\right)^{\frac{1}{2}} \|f\|_2 \leq \|f\|_2$ en utilisant l'inégalité de Cauchy-Schwartz. On a alors $\|T(f)\|_2 \leq \|f\|_2$. Donc $T \in \mathcal{L}(E)$.

- b) On s'aide de ce qui a été fait à la question précédente. T(f) est dérivable et on a $T(f)'(s) = -\int_0^s t f(t) dt + \int_s^1 (1-t)f(t)dt$. Puis T(f) est deux fois dérivable et T(f)''(s) = -sf(s) (1-s)f(s) = -f(s).
- c) Si $f \in \text{Ker}(T)$, on a T(f)'' = 0 donc f = 0. Ainsi T est injectif.
- d) Si $\lambda \in \sigma_P(T)$ et si $f \in \text{Ker}(T \lambda I d_E)$, on est sûr que $\lambda \neq 0$. Alors $f = \frac{1}{\lambda} T(f)$ est donc de classe \mathcal{C}^2 et $f'' = -\frac{1}{\lambda} f$. On a $\lambda f'' + f = 0$. Par ailleurs $\lambda f(s) = (1-s) \int_0^s t f(t) dt + s \int_s^1 (1-t) f(t) dt$ donc f(0) = f(1) = 0.
- e) Soient $\lambda \in \sigma_P(T)$ et $f \in \text{Ker}(T \lambda Id_E) \setminus \{0\}$. On distingue deux cas.
- $> \text{Si } \lambda > 0. \text{ On trouve } f(t) = A\cos\left(\frac{1}{\sqrt{\lambda}}t\right) + B\sin\left(\frac{1}{\sqrt{\lambda}}t\right). \text{ La condition } f(0) = 0 \text{ impose } A = 0. \text{ Donc} B \neq 0. \text{ On a } \sin\left(\frac{1}{\sqrt{\lambda}}\right) = 0. \text{ On en déduit } \lambda = \frac{1}{k^2\pi^2} \text{ avec } k \in \mathbf{N}^*.$

Réciproquement on calcule $F(s) = (1-s) \int_0^s t \sin(k\pi t) dt + s \int_s^1 (1-t) \sin(k\pi t) dt$. On trouve, en intégrant par parties les deux intégrales précédentes $F(s) = \frac{\sin(k\pi s)}{k^2\pi^2}$.

ightharpoonup Si $\lambda < 0$, on pose $\lambda = -\mu$. On a dans ce cas $f(t) = A \operatorname{ch} \left(\frac{1}{\sqrt{\mu}} t \right) + B \operatorname{sh} \left(\frac{1}{\sqrt{\mu}} t \right)$ Les conditions f(0) = 0 et f(1) = 0 imposent A = B = 0, ce qui est exclu.

Conclusion $\sigma_P(T) = \left\{ \frac{1}{k^2 \pi^2}, k \in \mathbf{N}^* \right\} \text{ et } \operatorname{Ker}(T - \frac{1}{k^2 \pi^2} I d_E) = \operatorname{Vect}(t \longmapsto \sin(k\pi t))$

PARTIE 4

- a) Soit $x \in H$. Pour $N \in \mathbb{N}$, on pose $x_N = \sum_{i=0}^N \langle x, b_i \rangle b_i$. D'après (ii), la suite (x_N) converge vers x. Par ailleurs l'application $y \longmapsto \|y\|^2$ est continue comme composée d'applications continues. On en déduit $\lim_{N \longrightarrow +\infty} \|x_N\|^2 = \|x\|^2$. Mais $\|x_N\|^2 = \sum_{i=0}^N \langle x, b_i \rangle^2$. On peut conclure $\|x\|^2 = \sum_{i=0}^\infty \langle x, b_i \rangle^2$.
- b) On doit montrer que l'on bien une produit scalaire. Pour cela il faut vérifier que l'application donnée dans l'énoncé est bien définie. Si $u \in H$ et $v \in H$, un a, pour tout n, $|u_n v_n| \leq \frac{1}{2}(|u_n|^2 + |v_n|^2)$. la série de terme général $|u_n v_n|$ est donc convergente.

Il est alors facile de vérifier que l'application $(u, v) \longmapsto \langle u, v \rangle$ est symétrique, bilinéaire positive et définie positive.

Enfin on désigne par e_i la suite $(\delta_{i,n})_{n\in\mathbb{N}}$ où $\delta_{i,n}=\begin{cases} 1 & \text{si } i=n \\ 0 & \text{sinon} \end{cases}$. La famille $(e_i)_{i\in\mathbb{N}}$ est une base hilbertienne car cette famille est orthonormale et, pour tout $x\in H$ et tout $N\in\mathbb{N}$, la suite $x-\sum_{i=0}^N\langle x,e_i\rangle e_i$ est la suite

dont les N+1 premiers termes sont nuls et coı̈ncidant avec x à partir du terme d'indice N+1. On a donc $\|x-\sum_{i=0}^N\langle x,e_i\rangle e_i\|^2=\sum_{n=N+1}^\infty|x_n|^2\longrightarrow 0 \text{ quand }N\longrightarrow \infty.$

c) Soit $N \in \mathbb{N}$. On a $\sum_{j=0}^{N} \|\tilde{T}(c_j)\|^2 = \sum_{j=0}^{N} \sum_{i=0}^{\infty} \langle b_i, \tilde{T}(c_j) \rangle^2 = \sum_{i=0}^{\infty} \sum_{j=0}^{N} \langle T(b_i), c_j \rangle^2$ (en appliquant a). On en déduit $\sum_{j=0}^{N} \|\tilde{T}(c_j)\|^2 \leq \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \langle T(b_i), c_j \rangle^2 = \sum_{i=0}^{\infty} \|T(b_i)\|^2$. On en déduit que la série $\sum_{j=0}^{\infty} \|\tilde{T}(c_j)\|^2$ converge et que $\sum_{j=0}^{\infty} \|\tilde{T}(c_j)\|^2 \leq \sum_{i=0}^{\infty} \|T(b_i)\|^2$. Maintenant, en échangeant les rôles des b_i et des c_j et de T et T, on obtient de la même façon l'inégalité $\sum_{i=0}^{\infty} \|T(b_i)\|^2 \leq \sum_{j=0}^{\infty} \|\tilde{T}(c_j)\|^2$. D'où l'égalité.

d) Si la somme $\sum_{i=0}^{\infty} \|T(b_i)\|^2$ converge pour une base hilbertienne (b_i) , alors $\sum_{j=0}^{\infty} \|\tilde{T}(c_j)\|^2$ converge pour toutes les bases hilbertiennes (c_j) et $\sum_{i=0}^{\infty} \|T(b_i)\|^2 = \sum_{j=0}^{\infty} \|\tilde{T}(c_j)\|^2$. En particulier $\sum_{i=0}^{\infty} \|T(b_i)\|^2 = \sum_{j=0}^{\infty} \|\tilde{T}(b_j)\|^2$. En échangeant les rôles de T et \tilde{T} , on a, pour toute base hilbertienne (c_j) , $\sum_{i=0}^{\infty} \|T(b_i)\|^2 = \sum_{j=0}^{\infty} \|T(c_j)\|^2$. On en déduit aussi que si $\sum_{i=0}^{\infty} \|T(b_i)\|^2 = +\infty$ pour une base hilbertienne, c'est le cas pour toutes.

e) En reprenant la base hilbertienne de la question b), on a $\sum_{i=0}^{\infty} \|S(e_i)\|^2 = \sum_{i=0}^{\infty} 1 = +\infty$ et $\sum_{i=0}^{\infty} \|V(e_i)\|^2 = \sum_{i=1}^{\infty} 1 = +\infty.$ On définit un opérateur T qui, à la suite $u \in H$, associe la suite v définie par $v_n = \frac{u_n}{n+1}$. On a $T(e_i) = \frac{1}{(i+1)^2}$. C'est le terme général d'une série convergente.

f) Je pense qu'il faut, à cet endroit, corriger l'énoncé en définissant $||T||_2 = \left(\sum_{i=0}^{\infty} ||T(b_i)||^2\right)^{\frac{1}{2}}$. Montrons que cela définit une norme, en, en même temps, que $\mathcal{L}^2(H)$ est un espace vectoriel.

$$\triangleright \text{ Homogeneit\'e}: \|\lambda T\|_2 = \left(\sum_{i=0}^{\infty} \|\lambda T(b_i)\|^2\right)^{\frac{1}{2}} = |\lambda| \|T\|_2.$$

ightharpoonup Séparation : si $||T||_2 = 0$, on a, pour tout $i, T(b_i) = 0$. Soit $x \in H$, on écrit $x = \sum_{i=0}^{\infty} \langle x, b_i \rangle b_i$. Par continuité de T on aura $T(x) = \sum_{i=0}^{\infty} \langle x, b_i \rangle T(b_i) = 0$.

 \triangleright Inégalité triangulaire : soient T et U dans $\mathcal{L}^2(H).$ On a

$$||T + U||_{2}^{2} = \sum_{i=0}^{\infty} ||T(b_{i}) + U(b_{i})||^{2} \le \sum_{i=0}^{\infty} (||T(b_{i})||^{2} + ||U(b_{i})||^{2} + 2||T(b_{i})||||U(b_{i})||) \le ||T||^{2} + ||U||^{2} + 2||T||||U||$$

en utilisant l'inégalité de Cauchy-Schwartz. D'où le résultat.

g) On commence par remarquer que la série converge.

En effet
$$\sum_{i=0}^{\infty} |\langle L(b_i), U(b_i) \rangle| \le \sum_{i=0}^{\infty} ||L(b_i)|| ||U(b_i)|| \le ||L||_2 ||U||_2$$
 d'après l'inégalité de Cauchy-Schwartz.

En effet
$$\sum_{i=0}^{\infty} |\langle L(b_i), U(b_i) \rangle| \leq \sum_{i=0}^{\infty} ||L(b_i)|| ||U(b_i)|| \leq ||L||_2 ||U||_2$$
 d'après l'inégalité de Cauchy-Schwartz. Montrons l'indépendance par rapport au choix de la base hilbertienne : on utilise une identité de polarisation.
$$\sum_{i=0}^{\infty} \langle L(b_i), U(b_i) \rangle = \frac{1}{2} \sum_{i=0}^{\infty} \left(||(L+U)(b_i)||^2 - ||L(b_i)||^2 - ||U(b_i)||^2 \right) = \frac{1}{2} (||L+U||_2^2 - ||L||_2^2 - ||U||_2^2).$$
 En dernier lieu, les propriétés définissant un produite scalaire sont faciles à vérifier.

h) Si
$$L \in \mathcal{L}^2(H)$$
. Soit M tel que $\forall x, \ \|U(x)\| \le M\|x\|$. On a $\sum_{i=0}^{\infty} \|UL(b_i)\|^2 \le M \sum_{i=0}^{\infty} \|L(b_i)\|^2 < +\infty$.