X-ENS 2017 - PSI Un corrigé

Partie I

1. (a) Soit $v \in E$. On a

$$(M - \mathrm{Id}_E)(v^+) = (M - \mathrm{Id}_E)(M + \mathrm{Id}_E)(v) = (M^2 - \mathrm{Id}_E)(v) = 0_E$$

$$(M + \mathrm{Id}_E)(v^-) = (M + \mathrm{Id}_E)(\mathrm{Id}_E - M)(v) = (\mathrm{Id}_E - M^2)(v) = 0_E$$

On en déduit que $v^+ \in F^+$ et $v^- \in F^-$.

(b) Soit $(v, w) \in F^+ \times F^-$. On a M(v) = v et M(w) = -w et donc

$$(v|w) = (Mv|w) = (v|Mw) = -(v|w)$$

Ceci montre que (v|w) = 0 et donc que $F^+ \oplus^{\perp} F^-$.

Par ailleurs, si $v \in E$ alors $v = \frac{1}{2}v^+ + \frac{1}{2}v^- \in F^+ + F^-$ et donc $E \subset F^+ + F^-$. La réciproque est immédiate et ainsi

$$E = F^+ \oplus^{\perp} F^-$$

(c) Soit $v \in F^+$. On a (avec (H4) et M(v) = v)

$$(M + \mathrm{Id}_E)(T(v)) = M \circ T(v) + T(v) = -T \circ M(v) + T(v) = -T(v) + T(v) = 0_E$$

et donc $T(v) \in F^-$. Ainsi $T(F^+) \subset F^-$.

Soit $v \in F^-$. On a (avec (H4) et M(v) = -v)

$$(M - \operatorname{Id}_E)(T(v)) = M \circ T(v) - T(v) = -T \circ M(v) - T(v) = -T(-v) - T(v) = 0_E$$

et donc $T(v) \in F^+$. Ainsi $T(F^-) \subset F^+$.

On en déduit que

$$T^{2}(F^{+}) = T(T(F^{+})) \subset T(F^{-}) \subset F^{+}$$

et de même

$$T^{2}(F^{-}) = T(T(F^{-})) \subset T(F^{+}) \subset F^{-}$$

2. Soit $0 \le k \le 2m$. On a

$$\operatorname{Im}(T^{k+1}) = T^k(\operatorname{Im}(T)) \subset \operatorname{Im}(T^k)$$

Supposons, par l'absurde, que cette inclusion soit une égalité. On aurait alors $\operatorname{Im}(T^{k+2}) = T(\operatorname{Im}(T^{k+1})) = T(\operatorname{Im}(T^k)) = \operatorname{Im}(T^{k+1})$. Par récurrence simple, on en déduirait que $\operatorname{Im}(T^k) = \operatorname{Im}(T^{2m}) = \operatorname{Im}(T^{2m+1}) = \{0_E\}$. Comme T^{2m} n'est pas l'application nulle, ceci est contradictoire. On a donc

$$\operatorname{Im}(T^{k+1}) \neq \operatorname{Im}(T^k)$$

3. On a des espaces emboîtés strictement et, en passant aux dimensions

$$2m + 1 = \dim(\operatorname{Im}(T^0)) > \dim(\operatorname{Im}(T^1)) > \dots > \dim(\operatorname{Im}(T^{2m+1})) = 0$$

On a ainsi 2m+2 entiers naturels en progression strictement croissante de 0 à 2m+1. $0, 1, \ldots, 2m+1$ est la seule telle progression et donc

$$\forall k \in \{0, \dots, 2m+1\}, \dim(\operatorname{Im}(T^k)) = 2m+1-k$$

Par théorème du rang, on en déduit que

$$\forall k \in \{0, \dots, 2m+1\}, \dim(\text{Ker}(T^k)) = \dim(E) - (2m+1-k) = k$$

4. Soit $0 \le k \le 2m+1$. Comme $0_{\mathcal{L}(E)} = T^{2m+1} = T^{2m+1-k} \circ T^k$, on a $\operatorname{Im}(T^k) \subset \ker(T^{2m+1-k})$. Par égalité des dimensions (question précédente),

$$\operatorname{Im}(T^k) = \ker(T^{2m+1-k})$$

5. On a $\dim(\operatorname{Im}(T^k)^{\perp}) = 2m + 1 - \dim(\operatorname{Im}(T^k)) = k$ et $\dim(\operatorname{Im}(T^{k-1})) = 2m + 2 - k$. Si les deux espaces étaient en somme directe (par l'absurde), la somme de leurs dimensions serait inférieure à celle de E, c'est à dire 2m + 1, ce qui est faux (elle vaut 2m + 2). On en déduit que

$$\operatorname{Im}(T^k)^{\perp} \cap \operatorname{Im}(T^{k-1}) \neq \{0_E\}$$

Soit $z \neq 0_E$ dans cet ensemble. On a donc $z \in \text{Im}(T^k)^{\perp} = \ker(T^{2m+1-k})^{\perp}$. Comme un espace et son orthogonal sont en somme directe, leur intersection est réduite à $\{0_E\}$. Comme $z \neq 0_E$, $z \notin \ker(T^{2m+1-k})$ et donc $T^{2m+1-k}(z) \neq 0$.

6. On a

$$(\operatorname{Id}_{E} + \alpha T^{2}) \circ \sum_{k=0}^{m} (-1)^{k} \alpha^{k} T^{2k} = \sum_{k=0}^{m} (-1)^{k} \alpha^{k} T^{2k} + \sum_{k=0}^{m} (-1)^{k} \alpha^{k+1} T^{2k+2}$$

$$= \sum_{k=0}^{m} (-1)^{k} \alpha^{k} T^{2k} - \sum_{j=1}^{m+1} (-1)^{j} \alpha^{j} T^{2j}$$

$$= \operatorname{Id}_{E} - (-1)^{2m+1} \alpha^{m+1} T^{2m+2}$$

$$= \operatorname{Id}_{E}$$

On en déduit (pas besoin de faire la composition dans l'autre sens pour des endomorphismes en dimension finie) que $\mathrm{Id}_E + \alpha T^2 \in GL(E)$ et que

$$(\mathrm{Id}_E + \alpha T^2)^{-1} = \sum_{k=0}^m (-1)^k \alpha^k T^{2k}$$

- 7. On a $0_E \in G$ et $G \subset E$. Si $x, y \in G$ et $\lambda \in \mathbb{R}$ alors
 - $x + \lambda y \in \text{Im}(T) \text{ car } x, y \in \text{Im}(T).$
 - $\forall v \in E, \ S(x + \lambda y, v) = S(x, v) + \lambda S(y, v) = 0.$

Ainsi, $x + \lambda y \in G$ et G est stable par combinaisons linéaires. C'est finalement un sous-espace de E.

Soit $u \in G \cap \ker(T)$. On a $\forall v \in E$, S(u,v) = 0 et donc (u|T(v)) + (T(u)|v) = 0. Comme $u \in \ker(T)$, ceci donne $\forall v \in E$, (u|T(v)) = 0. Mais $u \in \operatorname{Im}(T)$ (car $u \in G$) et il existe v tel que u = T(v). Pour ce v, on trouve que (u|u) = 0 et donc que u = 0. On a montré que

$$G \cap \ker(T) = \{0_E\}$$

- 8. $(v,w) \mapsto (T(v)|T(w))$ est clairement bilinéaire symétrique et positive. Soit $v \in G$ tel que (T(v)|T(v)) = 0. On a alors T(v) = 0 et donc $v \in G \cap \ker(T)$ et donc $v = 0_E$. L'application est donc définie positive. C'est finalement un produit scalaire sur G.
- 9. (a) On procède par récurrence.
 - <u>Initialisation</u>: le résultat est immédiat pour k = 0 (M = M).
 - <u>Hérédité</u> : supposons le résultat vrai jusqu'à un rang $k \ge 0$. On a alors

$$M \circ T^{k+1} = (M \circ T^k) \circ T = (-1)^k T^k \circ M \circ T = (-1)^k T^k \circ (-T \circ M) = (-1)^{k+1} T^{k+1} \circ M$$

ce qui prouve le résultat au rang k+1.

- (b) Soit $v \in \text{Im}(T^k)$; il existe $u \in E$ tel que $v = T^k(u)$. On a alors $M(v) = (-1)^k T^k(M(u)) \in \text{Im}(T^k)$.
 - Soit $v \in \ker(T^k)$. On a $T^k(M(v)) = (-1)^k M(T^k(v)) = 0$ et $M(v) \in \ker(T^k)$.

Les sous-espaces $\ker(T^k)$ et $\operatorname{Im}(T^k)$ sont ainsi stables par M.

- 10. En particulier $\ker(T)$ est stable par M. Or, $\ker(T)$ est de dimension 1 et il existe $e \neq 0_E$ tel que $\ker(T) = \operatorname{Vect}(e)$. On a alors $M(e) \in \ker(T)$ qui est multiple de e, c'est à dire que e est vecteur propre pour M. Or, $X^2 1$ annule M et les seules valeurs propres possibles pour M sont donc 1 et -1. On a ainsi M(e) = e ou M(e) = -e. Dans le premier cas, $\ker(T) \subset F^+$ et dans le second $\ker(T) \subset F^-$.
- 11. (a) Soit $z \in F^-$. On a vu que $T^{2m}(z) \in F^-$ (car F^- stable par T^2). Mais on a aussi $T^{2m}(z) \in \ker(T) \subset F^+$ (car $T^{2m+1} = 0_{\mathcal{L}(E)}$). Comme $F^- \oplus F^+$, $T^{2m}(z) = 0$.
 - (b) On vient de voir que $F^- \subset \ker(T^{2m}) = \operatorname{Im}(T)$. En passant à l'orthogonal, on en déduit que

$$\operatorname{Im}(T)^{\perp} \subset (F^{-})^{\perp} = F^{+}$$

Notons T' (resp. M') l'endomorphisme induit par T (resp. M') sur $\operatorname{Im}(T)$. M' et T' vérifient les mêmes hypothèses que M et T (si ce n'est que l'on n'est pas en dimension paire car $\operatorname{Im}(T)$ est de dimension 2m mais cela n'a pas été utilisé dans ce qui précède). $\operatorname{Im}(T^2)^{\perp} \cap \operatorname{Im}(T)$ s'interpète comme $\operatorname{Im}(T')^{\perp}$. On reprend alors la raisonnement avec T' mai en tenangt compte du fait que la dimension de l'espace est paire :

- Soit $v \in F^+$. En vertu de la question 1.c, $(T')^{2m-1}(v) \in F^-$. Or, $(T')^{2m} = 0_{\mathcal{L}(\operatorname{Im}(T))}$, donc $(T')^{2m-1}(v) \in \ker(T') \subset \ker(T) \subset F^+$ par hypothèse. Ainsi, $(T')^{2m-1}(v) \in F^+ \cap F^- = \{0_E\}$.
- On a ainsi prouvé que $F^+ \subset \ker((T')^{2m-1}) = \operatorname{Im}(T')$, d'où $\operatorname{Im}(T')^{\perp} \subset F^{+\perp} = F^-$. En résumé,

$$\operatorname{Im}(T^2)^{\perp} \cap \operatorname{Im}(T) \subset F^-$$

(c) Soit z un élément non nul de $\text{Im}(T)^{\perp}$. On a

$$\forall u \in G, \ (T(z)|u) = S(z,u) - (T(u)|z) = 0$$

car S(z,u) = 0 $(u \in G)$ et (T(u)|z) = 0 $(z \in \text{Im}(T)^{\perp})$. Ainsi, $T(z) \in G^{\perp}$. Par ailleurs, $\ker(T) = \text{Im}(T^{2m}) \subset \text{Im}(T)$ donc $\text{Im}(T)^{\perp} \subset \ker(T)^{\perp}$. Ainsi, $z \in \ker(T)^{\perp}$ et, comme $z \neq 0_E$, $z \notin \ker(T)$.

- (d) C'est le même résultat que 11(c) appliqué à $z \in (\text{Im}(T'))^{\perp}$, avec les notations introduites à la question 11(b).
- 12. On se place dans le cas où $\ker(T) \subset F^+$, l'autre cas $(\ker(T) \subset F^-)$ étant similaire (les rôles de F^+ et F^- sont intervertis).

Comme $\operatorname{Im}(T)^{\perp}$ est de dimension $1 \neq 0$, on peut trouver $w_1 \in \operatorname{Im}(T)^{\perp}$ non nul. Les questions 11.b et 11.c donnent $w_1 \in F^+$, $T(w_1) \in G^{\perp}$ et $T(w_1) \neq 0_E$. De plus $\operatorname{Im}(T^2) \subset \operatorname{Im}(T)$ donne, en passant à l'orthogonal, $\operatorname{Im}(T)^{\perp} \subset \operatorname{Im}(T^2)^{\perp}$ et ainsi $w_1 \in \operatorname{Im}(T^2)^{\perp}$.

La question 5 donne l'existence de $w_2 \neq 0_E$ dans $\operatorname{Im}(T^2)^{\perp} \cap \operatorname{Im}(T)$. Les questions 11.b et 11.d indiquent que $w_2 \in F^-$, $T(w_2) \in G^{\perp}$ et $T(w_2) \neq 0_E$.

 (w_1, w_2) vérifie alors (A), (B), (C) et est donc une paire caractérisante de G.

13. $(T(w_1), T(w_2))$ est une famille libre car ce sont des éléments non nuls dans F^- et F^+ qui sont en somme directe. Comme ce sont des éléments de G^{\perp} , cet espace est au moins de dimension 2. On en déduit que

$$\dim(G) = 2m + 1 - \dim(G^{\perp}) \le 2m - 1$$

Il faut être plus précis. On remarque que $G \subset \operatorname{Im}(T)$ et on a donc $\operatorname{Im}(T)^{\perp} \subset G^{\perp}$. $\operatorname{Im}(T)^{\perp}$ est de dimension 1 et on note ε une base de cet espace. $(\varepsilon, T(w_1), T(w_2))$ est aussi une famille libre car $\varepsilon \in \operatorname{Vect}(T(w_1), T(w_2))^{\perp}$. On a donc en fait

$$\dim(G) \le 2m - 2$$

14. Si $\dim(G) = 2m - 2$ alors G^{\perp} est de dimension 3. $(T(w_1), T(w_2))$ ne peut alors être une base de G^{\perp} . Il y a à l'évidence une erreur d'énoncé. On a en fait $(T(w_1), T(w_2))$ qui est une base de $G^{\perp} \cap \operatorname{Im}(T)$.

Partie II

15. (a) Supposons que $u \neq 0_E$ soit une solution. En particulier (avec v = u qui est bien dans G)

$$\lambda(T(u)|T(u)) = (u|u) = ||u||^2 > 0$$

Si, par l'absurde, on avait T(u) = 0 alors (\mathcal{P}_{λ}) donnerait $\forall v \in G, \ (u|v) = 0$ et on aurait $u \in G \cap G^{\perp}$ et donc $u = 0_E$ ce qui est exclus. On en déduit que (T(u)|T(u)) > 0 et ainsi

$$\lambda = \frac{\|u\|^2}{\|T(u)\|^2} > 0$$

- (b) Soit $u \in G$.
 - Si u est solution de (\mathcal{P}_{λ}) alors

$$\forall v \in G, \ (u + \lambda T^2(u)|v) = (u|v) + \lambda (T^2(u)|v) = \lambda ((T(u)|T(v)) + (T^2(u)|v)) = \lambda S(T(u), v)$$

Comme $v \in G$, S(T(u), v) = 0 et ainsi $u + \lambda T^2(u) \in G^{\perp}$.

- Réciproquement, supposons que $u + \lambda T^2(u) \in G^{\perp}$. On a alors

$$\forall v \in G, \ (u|v) = -\lambda(T^2(u)|v) = -\lambda(S(T(u),v) - (T(u)|T(v)))$$

Comme S(T(u), v) = 0 pour tout $v \in G$, on en déduit que

$$\forall v \in G, \ (u|v) - \lambda(T(u)|T(v)) = 0$$

et u est solution de (\mathcal{P}_{λ}) .

Dans ce cas (en supposant que u est solution), on peut décomposer $u+\lambda T^2(u)$ sur $(T(w_1), T(w_2))$ qui est une base de $G^{\perp} \cap \text{Im}(T)$ sous la forme $\alpha T(w_1) + \beta T(w_2)$. Il reste à composer par l'inverse de $\text{Id}_E + \lambda T^2$ (qui existe) pour obtenir

$$u = \alpha (\mathrm{Id}_E + \lambda T^2)^{-1} T(w_1) + \beta (\mathrm{Id}_E + \lambda T^2)^{-1} T(w_2)$$

- (c) On raisonne à nouveau en deux temps.
 - Supposons que (\mathcal{P}_{λ}) possède une solution non nulle u. Il existe donc α et β comme ci-dessus. En utilisant l'expression de $(\mathrm{Id}_E + \lambda T^2)^{-1}$, on obtient

$$u = \alpha \sum_{k=0}^{m} (-1)^k \lambda^k T^{2k+1}(w_1) + \beta \sum_{k=0}^{m} (-1)^k \lambda^k T^{2k+1}(w_2)$$

Notons que comme $T^{2m+1} = 0$, les termes pour k = m dans les sommes ci-dessus sont nuls. En effectuant le produit scalaire avec $T(w_1)$, on trouve

$$0 = \alpha Q_1(\lambda) + \beta \sum_{k=0}^{m-1} (-1)^k \lambda^k (T^{2k+1}(w_2)|T(w_1))$$

Comme $w_2 \in F^-$, les $T^{2k+1}(w_2)$ sont dans F^+ . Comme $w_1 \in F^+$, $T(w_1) \in F^-$. F^+ et F^- étant orthogonaux, tous les termes de la somme sont nuls et ainsi

$$\alpha Q_1(\lambda) = 0$$

En effectuant le produit scalaire avec $T(w_2)$, on trouve de même que

$$\beta Q_2(\lambda) = 0$$

Comme u n'est pas nul et que $(T_1(w), T_2(w))$ est libre, soit α soit β est non nul et donc soit $Q_1(\lambda)$ soit $Q_2(\lambda)$ est nul. On en déduit que

$$Q_1(\lambda).Q_2(\lambda) = 0$$

- Réciproquement, si $Q_1(\lambda).Q_2(\lambda) = 0$ alors par le même calcul que ci-dessus, on trouve que soit $(\mathrm{Id}_E + \lambda T^2)^{-1} T(w_1)$ soit $(\mathrm{Id}_E + \lambda T^2)^{-1} T(w_2)$ est dans G (car orthogonal à $T(w_1)$ et $T(w_2)$) et est alors solution non nulle de (\mathcal{P}_{λ}) .
- (d) D'après la question (b), l'ensemble des solution est au plus de dimension 2 (puisque toute solution est combinaison linéaire de $(\mathrm{Id}_E + \lambda T^2)^{-1}T(w_1)$ et $(\mathrm{Id}_E + \lambda T^2)^{-1}T(w_2)$). Si $Q_1(\lambda) = Q_2(\lambda) = 0$, on vient de voir que $(\mathrm{Id}_E + \lambda T^2)^{-1}T(w_1)$ et $(\mathrm{Id}_E + \lambda T^2)^{-1}T(w_2)$ sont deux solutions et elles sont indépendantes (car $T(w_1)$ et $T(w_2)$ sont indépendants et on compose par un isomorphisme). Ces deux vecteurs forment une base de H_λ qui est alors de dimension 2.
 - Si λ n'est pas racine commune de Q_1 et Q_2 alors, avec les notations de (b) et le calcul de (c), α ou β doit être nul et H_{λ} est de dimension au plus 1. Comme dans la cas précédent, on a une solution non nulle et H_{λ} est en fait de dimension 1.
- (e) Par définition de S, on a

$$S(w_i, T^{2k+1}(w_i)) = (T(w_i)|T^{2k+1}(w_i)) + (w_i|T^{2k+2}(w_i))$$

Mais w_i est dans $\text{Im}(T^2)^{\perp}$ et $T^{2k+2}(w_i) \in \text{Im}(T^2)$ montre que le second produit scalaire est nul. On en déduit que

$$\forall i \in \{1, 2\}, \ Q_i(X) = \sum_{k=0}^{m-1} (-1)^k S(w_i, T^{2k+1}(w_i)) X^k$$

16. (a) Par bilinéarité du produit scalaire,

$$(u|v) = \sum_{i=1}^{n} \sum_{j=1}^{n} u_i v_j(z_i|z_j) = \sum_{i=1}^{n} \left(u_i \sum_{j=1}^{n} (z_i|z_j) v_j \right) = \sum_{i=1}^{n} U_i(AV)_j = {}^{t}UAV$$

De même,

$$(u|v) = \sum_{i=1}^{n} \sum_{j=1}^{n} u_i v_j (T(z_i)|T(z_j)) = {}^{t} UBV$$

Supposons que AV = 0; on a alors $\forall u \in G$, (u|v) = 0 et donc $v \in G \cap G^{\perp}$ et donc v = 0 puis V = 0. On a ainsi $\ker(A) = \{0\}$ et A est une matrice inversible.

Supposons que BV=0; on a de même $\forall u\in G,\ (T(u)|T(v))=0$. En particulier, (T(v)|T(v))=0 et avec la question 8 (comme $v\in G$), v=0. B est ainsi inversible.

(b) Supposons que $u \in G$ est solution de (\mathcal{P}_{λ}) . On a donc

$$\forall v \in G, \ (v|u) - \lambda(T(v)|T(u)) = 0$$

ce qui donne matriciellement

$$\forall V \in \mathcal{M}_{\ell,1}(\mathbb{R}), \ 0 = {}^tVAU - \lambda^tVBU = {}^tV(A - \lambda B)U$$

En appliquant ceci avec $V = (A - \lambda B)U$, on trouve alors que $||(A - \lambda B)U||^2 = 0$ (norme euclidienne canonique sur les matrices colonnes) et donc que

$$(A - \lambda B)U = 0$$

Réciproquement, si cette condition est vérifiée, on remonte le calcul pour obtenir que u est solution de (\mathcal{P}_{λ}) .

Si (\mathcal{P}_{λ}) admet une solution non nulle u, on trouve $U \neq 0$ tel que $(A - \lambda B)U = 0$ et $A - \lambda B$ est non inversible et donc est de déterminant nul. Réciproquement, la nullité du déterminant mène à un U puis à un $u \neq 0$ solution.

(c) Soit $\mathcal{B}' = (z'_1, \ldots, z'_\ell)$ une autre base et P la matrice de passage de \mathcal{B} à \mathcal{B}' . On note U' la colonne associée à $u \in G$ dans la base \mathcal{B}' . On a donc U = PU'. On note aussi A', B' les matrices de terme général $(z'_i|z'_i)$ et $(T(z'_i)|T(z'_i))$. On a alors

$$\forall u, v \in G, \ (u|v) = {}^t UAV = {}^t U'A'V'$$

et donc

$$\forall u, v \in G, \ ^t\!U'^t\!PAPV' = ^t\!U'A'V'$$

On en déduit que

$$\forall U', V', \ ^t\!U'(^t\!PAP - A')V' = 0$$

En utilisant les éléments de la base canonique de $\mathcal{M}_{\ell,1}(\mathbb{R})$, on obtient que ${}^t\!PAP - A' = 0$. De même, ${}^t\!PBP = B'$ et ${}^t\!P(A - tB)P = A' - tB'$. En passant au déterminant (morphisme multiplicatif), on obtient $\det(A - tB) \det(P^2) = \det(A' - tB')$ et de même $\det(B) \det(P)^2 = \det(B')$. Il y a simplification et

$$\frac{\det(A - tB)}{\det(B)} = \frac{\det(A' - tB')}{\det(B')}$$

 ψ est donc indépendante du choix de la base.

(d) En chosissant une base orthonormée de G pour le produit scalaire de la question 8, on obtient $B=I_\ell$ et

$$\psi(t) = \det(A - tI_{\ell}) = (-1)^{\ell} \chi_A(t) = \chi_A(t)$$

où χ_A est le polynôme caractéristique de A qui est de degré $\ell.$

- (e) La matrice A étant symétrique, elle est diagonalisable et son polynôme caractéristique est scindé. Ainsi, ψ est scindé dans $\mathbb{R}[X]$. La multiplicité d'une racine λ est aussi égale à la dimension du sous-espace propre (car A est diagonalisable) et la question 15(d) montre que cette dimension vaut 1 ou 2.
- (f) D'après (b) dans le cas $B = I_{\ell}$ (auquel on peut se ramener),on a H_{λ} qui est de la même dimension que $\ker(A \lambda I_{\ell})$. Comme A est diagonalisable, cette dimension est égale à la multiplicité de la valeur propre λ dans A et donc à la multiplicité de λ comme racine de R. Si λ est de multiplicité 2 alors il est avec 15(d) racine de Q_1 et Q_2 . Sinon il est racine de Q_1 ou (exclusif) Q_2 . Dans le produit Q_1Q_2 , il y a donc toutes les racines de R avec une multiplicité au moins aussi grande. Mais comme Q_1Q_2 est de degré $\leq 2m-2=\deg(R)$, ces polynômes sont en fait égaux à une constante multiplicative non nulle près. En particulier le coefficients de X^{2m-2} dans Q_1Q_2 est non nul et il est égal au produit des $S(w_i, T^{2m-1}(w_i))$. Come R est unitaire, ona finalement

$$\psi(X) = \frac{1}{S(w_1, T^{2m-1}(w_1))S(w_2, T^{2m-1}(w_2))}Q_1(X)Q_2(X)$$

Partie III

- 17. On a quatre choses à vérifier.
 - $T^k(P) = P^k$. La dérivée n+1-ième d'un polynôme de degré $\leq n$ étant nulle, $T^{2m+1} = 0_{\mathcal{L}(E)}$. De plus $T^{2m}(X^{2m}) = (2m)! \neq 0$ et donc $T^{2m} \neq 0_{\mathcal{L}(E)}$.
 - $M^2(P(X)) = M(P(-X)) = P(X)$ et donc $M^2 = Id_E$.
 - Soient $P, Q \in E$. Le changement de variable affine u = -t donne

$$(M(P)|Q) = \int_{-1}^{1} P(-t)Q(t) dt = \int_{1}^{-1} P(u)Q(-u)(-du) = (P|M(Q))$$

- Soit $P \in E$. On a

$$T \circ M(P) = T(P(-X)) = -P'(-X)$$
 et $M \circ T(P(X)) = M(P'(X)) = P'(-X)$

On a donc $T \circ M + M \circ T = 0_{\mathcal{L}(E)}$.

18. F^+ est constitué des polynômes pairs de E et F^- des polynômes impairs de E:

$$F^+ = \text{Vect}(1, X^2, \dots, X^{2m})$$
 et $F^- = \text{Vect}(X, X^3, \dots, X^{2m-1})$

19. Soient $P,Q \in E$. En reconnaissant une dérivée de produit :

$$S(P,Q) = \int_{-1}^{1} P(t)Q'(t) dt + \int_{-1}^{1} P'(t)Q(t) dt = [P(t)Q(t)]_{-1}^{1} = P(1)Q(1) - P(-1)Q(-1)$$

20. Les éléments de G sont les éléments P de $\operatorname{Im}(T) = \mathbb{R}_{2m-1}[X]$ tels que

$$\forall Q \in E, \ P(1)Q(1) = P(-1)Q(-1)$$

Soit $P \in G$. En choisissant Q = X + 1 ou Q = X - 1, on trouve P(1) = P(-1) = 0 et P est multiple de $(X - 1)(X + 1) = X^2 - 1$. De plus P est de degré $\leq 2m - 1$ et donc $P \in (X^2 - 1)\mathbb{R}_{2m-3}[X]$.

Réciproquement, les éléments de $(X^2-1)\mathbb{R}_{2m-3}[X]$ sont bien dans G et ainsi

$$G = (X^2 - 1)\mathbb{R}_{2m-3}[X] = \mathbb{R}^0_{2m-1}[X]$$

G est de degré 2m-2 et (H5) est satisfaite.

21. (a) L_n est de degré n comme dérivée n-ième d'un polynôme de degré 2n. Comme $R_n(-X) = R_n(X)$, on a $(-1)^n R_n^{(n)}(-X) = R_n^{(n)}(X)$ (dérivations composées) et ainsi

$$M(L_n) = (-1)^n L_n$$

(b) Soit $n \geq 1$. Soit $P \in \mathbb{R}_{n-1}[X]$. On a

$$(L_n|P) = \frac{1}{2^n n!} \int_{-1}^1 R_n^{(n)}(t) P(t) dt$$

Une intégration par parties donne

$$\int_{-1}^{1} R_n^{(n)}(t) P(t) dt = \left[R_n^{(n-1)}(t) P(t) \right]_{-1}^{1} - \int_{-1}^{1} R_n^{(n-1)}(t) P'(t) dt$$

Comme 1 et -1 sont racines de multiplicité n de R_n , le crochet est nul et

$$\int_{-1}^{1} R_n^{(n)}(t)P(t) dt = -\int_{-1}^{1} R_n^{(n-1)}(t)P'(t) dt$$

Une récurrence donne alors

$$\forall k \in \{0, \dots, n\}, \ \int_{-1}^{1} R_n^{(n)}(t) P(t) \ dt = (-1)^k \int_{-1}^{1} R_n^{(n-k)}(t) P^{(k)}(t) \ dt$$

Pour k = n, et comme $P^{(n)} = 0$ (car $\deg(P) \le n - 1$), on trouve alors

$$(L_n|P) = 0$$

(c) On a $2^n n! L_n^{(k)} = R_n^{(n+k)} = ((X-1)^n (X+1)^n)^{(n+k)}$. Par formule de Leibnitz,

$$2^{n} n! L_{n}^{(k)} = \sum_{j=0}^{n+k} {n+k \choose j} ((X-1)^{n})^{(j)} ((X+1)^{n})^{(n+k-j)}$$

Quand on évalue en 1, tous les termes de la quef sont nuls sauf celui pour j = n (si j < n, 1 est racine de $((X-1)^n)^{(j)}$ et si j > n ce polynôme est nul). Ce terme pour j = n vaut

$$\binom{n+k}{n}n!n(n-1)\dots(n-k+1)(X+1)^{n-k}$$

On a finalement

$$2^{n} n! L_{n}^{(k)}(1) = \binom{n+k}{n} n! n(n-1) \dots (n-k+1) 2^{n-k} = \frac{(n+k)!}{k!} \frac{n!}{(n-k)!} 2^{n-k}$$

ou encore

$$L_n^{(k)}(1) = \frac{(n+k)!}{(n-k)!} \frac{1}{k!2^k}$$

(d) On a en particulier $L_n(1)=0$. Et donc $L_n(-1)=M\circ L_n(1)=(-1)^nL_n(1)=(-1)^n$. On a aussi

$$L_n^{(2k+1)}(-1) = M \circ T^{2k+1}(L_n)(1)$$

$$= -T^{2k+1} \circ M(L_n)(1)$$

$$= -(-1)^n T^{2k+1}(L_n)(1)$$

$$= (-1)^{n+1} L_n^{(2k+1)}(1)$$

Finalement

$$S(L_n, L_n^{(2k+1)}) = L_n(1)L_n^{(2k+1)}(1) - L_n(-1)L_n^{(2k+1)}(-1) = 2L_n^{(2k+1)}(1)$$

- 22. On a les points (A), (B), (C) à vérifier.
 - L_{2m} est pair comme dérivée d'ordre pair d'un polynôme pair et est donc dans F^+ . $T(L_{2m}) = L'_{2m}$ n'est pas nul (c'est la dérivée 2m+1-ième d'un polynôme de degré 4m et $2m+1 \le 4m$). Soit $P \in G$ (polynôme de degré $\le 2m-1$ et dont 1 et -1 sont racines). Une intégration par parties donne

$$(T(L_{2m})|P) = \int_{-1}^{1} L'_{2m}(t)P(t) dt = [L_{2m}(t)P(t)]_{-1}^{1} + \int_{-1}^{1} L_{2m}(t)P'(t) dt$$

Le crochet est nul car P(1) = P(-1) = 0. L'intégrale est nulle avec 21(b). Ainsi, $T(L_{2m}) \in G^{\perp}$.

- L_{2m-1} est impair comme dérivée d'ordre impair d'un polynôme pair et est donc dans F^- . $T(L_{2m-1}) = L'_{2m-1}$ n'est pas nul (c'est la dérivée 2m-ième d'un polynôme de degré 4m-2 et $2m \leq 4m-2$). On montre comme, dans le point précédent que $T(L_{2m-1}) \in G^{\perp}$.

- Soit $P \in \text{Im}(T^2) = \mathbb{R}_{2m-2}[X]$. On a $(L_{2m}|P) = \int_{-1}^{1} L_{2m}(t)P(t) \ dt = 0$ d'après 21(b) et donc $L_{2m} \in \text{Im}(T^2)^{\perp}$. On procède de même pour L_{2m-1} .
- 23. Le problème proposé est le problème (\mathcal{P}_{λ}) puisque $G = \mathbb{R}^0_{2m-1}[X]$. Le polynôme K proposé est alors exactement Q_1Q_2 introduit en 15(d). Il y a donc une solution non nulle si et seulement si $K(\lambda) = 0$.
- 24. Une intégration par parties donne

$$(P|P) = \left[tP(t)^2\right]_{-1}^1 - 2\int_{-1}^1 tP(t)P'(t) dt$$

Pour $P \in \mathbb{R}^0_{2m-1}[X]$, le crochet est nul. En majorant |tP(t)P'(t)| par |P(t)P'(t)| et par inégalité de Cauchy-Schwarz, on a alors

$$(P|P) = |(P|P)| \le 2 \int_{-1}^{1} |P(t)| \cdot |P'(t)| \le 2||P|| \cdot ||P'||$$

Si P est non nul, on peut diviser par ||P|| puis élever au carré pour obtenir l'inégalité demandée. Si P = 0, on a égalité.

Si $P \neq 0$ alors P et P' ne sont pas colinéaires pour des raisons de degré et il n'y a pas égalité dans l'inégalité de Cauchy-Schwarz et donc pas dans celle demandée.

25. Soit λ une racine de K et P solution non nulle du problème (qui existe d'après 23). D'après 15(a), $\lambda > 0$. Par ailleurs comme $P \in \mathbb{R}^0_{2m-1}[X]$ et est non nul, on a

$$\lambda(P'|P') = (P|P) < 4(P'|P')$$

L'inégalité stricte entraı̂ne $(P'|P') \neq 0$ et donc (P'|P') > 0. On en déduit que $\lambda < 4$.

26. D'après la partie II, on a

$$\frac{\det(A)}{\det(B)} = \psi(0) = \frac{K(0)}{S(L_{2m}, L_{2m}^{2m-1})S(L_{2m-1}, L_{2m-1}^{2m-1})}$$

Avec l'expression de K et 21(c),

$$K(0) = L'_{2m-1}(1)L'_{2m}(1) = (2m+1)m^2(2m-1)$$

Avec 21(d) on a aussi

$$S(L_{2m}, L_{2m}^{(2m-1)}) = 2L_{2m}^{(2m-1)}(1) = \frac{(4m-1)!}{(2m-1)!2^{2m-2}}$$

$$S(L_{2m-1}, L_{2m-1}^{(2m-1)}) = \frac{(4m-2)!}{(2m-1)!2^{2m-2}}$$

On a donc (aux erreurs de calcul près et sans simplifier):

$$\frac{\det(A)}{\det(B)} = \frac{(2m+1)m^2(2m-1)((2m-1)!)^24^{2m-2}}{(4m-2)!(4m-1)!}$$