X-ENS PSI 2020 - corrigé

Partie I

- 1. Soit μ un minorant de h. Soit $x \in \mathbb{R}^d$. Pour tout $y \in \mathbb{R}^d$, $h(y) + \frac{1}{\varepsilon} ||y x||^{\alpha} \geqslant \mu + 0$ ainsi l'ensemble de ces valeurs est une partie de \mathbb{R} non vide et minorée, qui admet donc une borne inférieure $(T_{\varepsilon}h)(x)$. Le réel h(x) obtenu pour y = x appartient à l'ensemble, donc $(T_{\varepsilon}h)(x) \leqslant h(x)$.
- 2. Soient μ_1 et μ_2 des minorants de h_1 et h_2 respectivement, puis $\mu = \min(\mu_1, \mu_2)$. Comme $H(x) \in \{h_1(x), h_2(x)\}$, on a $H(x) \geqslant \mu$ pour tout $x \in \mathbb{R}^d$, donc H est minorée, d'où l'existence de $T_{\varepsilon}H$.

Soit $x \in \mathbb{R}^d$.

• Pour tout $y \in \mathbb{R}^d$, $H(y) + \frac{1}{\varepsilon} ||y - x||^{\alpha} \leqslant h_1(y) + \frac{1}{\varepsilon} ||y - x||^{\alpha}$, a fortiori $(T_{\varepsilon}H)(x) \leqslant h_1(y) + \frac{1}{\varepsilon} ||y - x||^{\alpha}$. Le réel $(T_{\varepsilon}H)(x)$ est un minorant des $h_1(y) + \frac{1}{\varepsilon} ||y - x||^{\alpha}$, or $(T_{\varepsilon}h_1)(x)$ en est le plus grand minorant, donc $(T_{\varepsilon}H)(x) \leqslant (T_{\varepsilon}h_1)(x)$. Symétriquement, $(T_{\varepsilon}H)(x) \leqslant (T_{\varepsilon}h_2)(x)$. Ainsi,

$$(T_{\varepsilon}H)(x) \leqslant \min((T_{\varepsilon}h_1)(x), (T_{\varepsilon}h_2)(x)).$$

• Pour tout $y \in \mathbb{R}^d$, si par exemple $h_2(y) \geqslant h_1(y)$ (l'autre cas est analogue),

$$H(y) + \frac{1}{\varepsilon} ||y - x||^{\alpha} = h_1(y) + \frac{1}{\varepsilon} ||y - x||^{\alpha} \geqslant (T_{\varepsilon} h_1)(x)$$

donc

$$H(y) + \frac{1}{\varepsilon} ||y - x||^{\alpha} \geqslant \min ((T_{\varepsilon} h_1)(x), (T_{\varepsilon} h_2)(x)).$$

Le réel min $((T_{\varepsilon}h_1)(x), (T_{\varepsilon}h_2)(x))$ est donc un minorant de l'ensemble des $H(y) + \frac{1}{\varepsilon}||y - x||^{\alpha}$; par définition de la borne inférieure :

$$\min ((T_{\varepsilon}h_1)(x), (T_{\varepsilon}h_2)(x)) \leqslant (T_{\varepsilon}H)(x).$$

Finalement $(T_{\varepsilon}H)(x) = \min((T_{\varepsilon}h_1)(x), (T_{\varepsilon}h_2)(x))$ pour tout x.

3. Soit $x \in \mathbb{R}^d$. Soit $y \in \mathbb{R}^d$. On sait que $\mathbb{R}^d = \mathbb{R}x \oplus (\mathbb{R}x)^{\perp}$ donc il existe $\lambda \in \mathbb{R}$ et $y_{\perp} \in (\mathbb{R}x)^{\perp}$ tels que $y = \lambda x + y_{\perp}$. Ainsi $g(y) + \frac{1}{\varepsilon} ||y - x||^2 = ||\lambda x + y_{\perp}||^2 + \frac{1}{\varepsilon} ||(\lambda - 1)x + y_{\perp}||^2$. Vu $x \perp y_{\perp}$, le théorème de Pythagore s'applique :

$$g(y) + \frac{1}{\varepsilon} \|y - x\|^2 = \lambda^2 \|x\|^2 + \|y_{\perp}\|^2 + \frac{1}{\varepsilon} (\lambda - 1)^2 \|x\|^2 + \frac{1}{\varepsilon} \|y_{\perp}\|^2.$$

Il en découle que

$$g(y) + \frac{1}{\varepsilon} ||y - x||^2 \ge \lambda^2 ||x||^2 + \frac{1}{\varepsilon} (\lambda - 1)^2 ||x||^2 = \varphi(\lambda) ||x||^2.$$

Les variations de $\varphi:\lambda\mapsto\lambda^2+\frac{1}{\varepsilon}(\lambda-1)^2$ montrent qu'elle atteint son minimum en $\lambda_\varepsilon=\frac{1}{1+\varepsilon}$ avec $\varphi(\lambda_\varepsilon)=\frac{1}{1+\varepsilon}$. Ainsi $\forall y\in\mathbb{R}^d,\ g(y)+\frac{1}{\varepsilon}\|y-x\|^2\geqslant\frac{1}{1+\varepsilon}\|x\|^2$ et cette valeur est atteinte en choisissant $y=\lambda_\varepsilon x$. La borne inférieure est ici un minimum :

$$(T_{\varepsilon}g)(x) = \frac{1}{1+\varepsilon}||x||^2 = \frac{1}{1+\varepsilon}g(x).$$

4. (a) Soient $x, x' \in \mathbb{R}^d$. Pour tout $y \in \mathbb{R}^d$, par inégalité triangulaire,

$$h(y) + \frac{1}{\varepsilon} ||y - x'|| \le h(y) + \frac{1}{\varepsilon} ||y - x|| + \frac{1}{\varepsilon} ||x - x'||$$

donc $(T_{\varepsilon}h)(x') \leqslant h(y) + \frac{1}{\varepsilon}||y - x|| + \frac{1}{\varepsilon}||x - x'||$ puis

$$(T_{\varepsilon}h)(x') - \frac{1}{\varepsilon}||x - x'|| \le h(y) + \frac{1}{\varepsilon}||y - x||$$

donc par définition de la borne inférieure,

$$(T_{\varepsilon}h)(x') - \frac{1}{\varepsilon}||x - x'|| \leqslant (T_{\varepsilon}h)(x).$$

Ainsi,

$$(T_{\varepsilon}h)(x') - (T_{\varepsilon}h)(x) \leqslant \frac{1}{\varepsilon} ||x - x'||.$$

Quitte à échanger x et x', on peut supposer que $(T_{\varepsilon}h)(x') \geqslant (T_{\varepsilon}h)(x)$, ainsi :

$$|(T_{\varepsilon}h)(x') - (T_{\varepsilon}h)(x)| \leqslant \frac{1}{\varepsilon}||x - x'||.$$

(b) Si $h = T_{\varepsilon}h$, alors h est $\frac{1}{\varepsilon}$ -lipschitzienne d'après (a).

Réciproquement, supposons que h soit $\frac{1}{\varepsilon}$ -lipschitzienne. Soit $x \in \mathbb{R}^d$. $\forall y \in \mathbb{R}^d$, $h(x) - h(y) \leqslant |h(x) - h(y)| \leqslant \frac{1}{\varepsilon} ||x - y||$ donc $h(x) \leqslant h(y) + \frac{1}{\varepsilon} ||y - x||$. C'est vrai $\forall y$, donc $h(x) \leq (T_{\varepsilon}h)(x)$. Par ailleurs avec la question (1), $(T_{\varepsilon}h)(x) \leq h(x)$. Ainsi, $(T_{\varepsilon}h)(x) = h(x)$. On en déduit que $T_{\varepsilon}h = h$.

(c) Soit $x \in \mathbb{R}^d$.

$$(T_{\varepsilon}h)(x) = \inf\left\{h(y) + \frac{1}{\varepsilon}||y - x||; y \in \mathbb{R}^d\right\} \leqslant h(0) + \frac{1}{\varepsilon}||0 - x|| = \frac{1}{\varepsilon}||x||$$

donc, $T_{\varepsilon}h = \min\left(T_{\varepsilon}h, \frac{1}{\varepsilon}h\right) = \min\left(T_{\varepsilon}h, T_{\varepsilon}\left(\frac{1}{\varepsilon}h\right)\right)$ car $\frac{1}{\varepsilon}h$ est $\frac{1}{\varepsilon}$ -lipschitzienne, puis avec la question (2), $T_{\varepsilon}h = T_{\varepsilon}\min\left(h, \frac{1}{\varepsilon}h\right) = T_{\varepsilon}(\mu h)$ avec $\mu = \min\left(1, \frac{1}{\varepsilon}\right) \leqslant \frac{1}{\varepsilon}$, donc μh est $\frac{1}{\varepsilon}$ -lipschitzienne, ainsi $T_{\varepsilon}h = T_{\varepsilon}(\mu h) = \mu h = \min(1, \frac{1}{\varepsilon}) h.$

(d) On note u(x) = 1 et h(x) = ||x||. Les fonctions u et h sont bien minorées. On a clairement $T_{\varepsilon}u = u$ par définition. Utilisons la question (2):

$$T_{\varepsilon}\ell = T_{\varepsilon}\left(\min\left(u,h\right)\right) = \min\left(T_{\varepsilon}u,T_{\varepsilon}h\right) = \min\left(u,\mu h\right)$$

d'après (c) en notant $\mu = \min\left(1, \frac{1}{\varepsilon}\right)$. Ainsi $\forall x \in \mathbb{R}^d$,

- $-\operatorname{si} \varepsilon \leqslant 1, \ \mu = 1 \operatorname{donc} (T_{\varepsilon}\ell)(x) = \min(1, \|x\|) = \ell(x)$ $-\operatorname{si} \varepsilon > 1, \ \mu = \frac{1}{\varepsilon} \operatorname{donc} (T_{\varepsilon}\ell)(x) = \min(1, \frac{1}{\varepsilon}\|x\|) = \begin{cases} 1 & \text{si} \quad \|x\| \geqslant \varepsilon \\ \frac{1}{\varepsilon}\|x\| & \text{si} \quad \|x\| < \varepsilon \end{cases}$
- 5. Notons $m = |f|_{\infty}$, vu f bornée. On a donc $-m \leqslant f \leqslant m$.

Pour $x \in \mathbb{R}^d$, pour tout $y \in \mathbb{R}^d$, $f(y) + \frac{1}{\varepsilon} ||y - x||^{\alpha} \ge f(y) \ge -m$ donc $(T_{\varepsilon}f)(x) \ge -m$. De plus avec $(1), (T_{\varepsilon}f)(x) \leqslant f(x) \leqslant m$, ainsi $|T_{\varepsilon}f| \leqslant m$, donc $T_{\varepsilon}f$ est bornée, et $|T_{\varepsilon}f|_{\infty} \leqslant m = |f|_{\infty}$.

- 6. A(x) n'est pas vide car il contient x.
 - Soit $y \in A(x)$. On a donc $f(y) + \frac{1}{\varepsilon} ||y x||^{\alpha} \leqslant f(x)$, puis $\frac{1}{\varepsilon} ||y x||^{\alpha} \leqslant f(x) f(y) \leqslant 2|f|_{\infty}$, d'où $||y - x|| \le (2\varepsilon |f|_{\infty})^{1/\alpha}$.
 - Montrons que $V = \left\{ f(y) + \frac{1}{\varepsilon} ||y x||^{\alpha}; y \in \mathbb{R}^d \right\}$ et $W = \left\{ f(y) + \frac{1}{\varepsilon} ||y x||^{\alpha}; y \in A(x) \right\}$ possèdent les même minorants.
 - Tout minorant de V est clairement minorant de W car $W \subset V$.
 - Soit t un minorant de W. Comme $x \in A(x)$, on a $t \leq f(x) + \frac{1}{\varepsilon} ||x x||^{\alpha}$ soit $t \leq f(x)$. Soit $y \in \mathbb{R}^d$. Si $y \notin A(x)$, c'est que $f(y) + \frac{1}{\varepsilon} ||y - x||^{\alpha} > f(x)$, donc $f(y) + \frac{1}{\varepsilon} ||y - x||^{\alpha} \ge t$; si $y \in A(x)$, $f(y) + \frac{1}{\varepsilon} ||y - x||^{\alpha} \ge t$ car t minore W.

 Bref, $\forall y \in \mathbb{R}^d$, $f(y) + \frac{1}{\varepsilon} ||y - x||^{\alpha} \ge t$ donc t minore V.

 Ainsi V et W ont les mêmes minorants, et donc la même borne inférieure : inf $V = \inf W$.

Autrement dit: $(T_{\varepsilon}f)(x) = \inf \{f(y) + \frac{1}{\varepsilon} ||y - x||^{\alpha}; y \in A(x)\}$.

7. Soit $x \in \mathbb{R}^d$. La fonction $g: y \mapsto f(y) + \frac{1}{\varepsilon} \|y - x\|^{\alpha}$ est continue. La partie $A(x) \subset \mathbb{R}^d$ est non vide d'après la question (6), fermée et bornée, en effet :

- fermée : $A(x) = \{y \in \mathbb{R}^d : g(y) \leq \text{cte}\}$ avec g continue sur \mathbb{R}^d . L'inégalité étant large, A(x) est fermée.
- bornée : vu la question (6), A(x) est incluse dans une boule fermée de centre x.

Selon un théorème du cours, valable en dimension finie (c'est le cas ici), la fonction g admet un minimum sur A(x), en un point y_x . Le dernier résultat de la question (6) montre qu'alors $(T_{\varepsilon}f)(x) = g(y_x)$.

8. Notons que le réel $|T_{\varepsilon}f - f|_{\infty}$ est bien défini d'après (5). Soient $x, y \in \mathbb{R}^d$. Quitte à échanger les noms, on peut supposer $0 \leq f(x) - f(y)$. Par définition, $(T_{\varepsilon}f)(x) \leq f(y) + \frac{1}{\varepsilon}||y - x||^{\alpha}$ donc

$$f(x) - f(y) \leqslant f(x) - (T_{\varepsilon}f)(x) + \frac{1}{\varepsilon} ||y - x||^{\alpha}$$

d'où

$$|f(x) - f(y)| = f(x) - f(y) \leqslant |T_{\varepsilon}f - f|_{\infty} + \frac{1}{\varepsilon}||y - x||^{\alpha}.$$

9. (a) Soit $r \ge 0$. On a $(0,0) \in \mathcal{B}_0(r)$ donc $\mathcal{B}_0(r)$ n'est pas vide. Pour tout $(x,y) \in \mathcal{B}_0(r)$, on déduit de (8) que $|f(x) - f(y)| \le |T_{\varepsilon}f - f|_{\infty} + \frac{1}{\varepsilon}r^{\alpha}$. Ainsi $\{|f(x) - f(y)|; (x,y) \in \mathcal{B}_0(r)\}$ est majoré, non vide, donc admet une borne supérieure, par définition inférieure au majorant obtenu :

$$\omega_f(r) \leqslant |T_{\varepsilon}f - f|_{\infty} + \frac{1}{\varepsilon}r^{\alpha}.$$

- (b) Si $0 \leqslant r \leqslant r'$, alors $\mathcal{B}_0(r) \subset \mathcal{B}_0(r')$ donc $\omega_f(r) \leqslant \omega_f(r')$. En effet $\omega_f(r')$ est un majorant de $\{|f(x) f(y)|; (x, y) \in \mathcal{B}_0(r')\}$, a fortiori c'est un majorant de $\{|f(x) f(y)|; (x, y) \in \mathcal{B}_0(r)\}$.
- 10. Soit $x \in \mathbb{R}^d$.
 - $(T_{\varepsilon}f)(x) \leqslant f(x)$ d'après la question (1).
 - Pour tout $y \in A(x)$, la question (6) donne $||y x|| \le r_{\varepsilon}$, donc $|f(x) f(y)| \le \omega_f(r_{\varepsilon})$, en particulier $f(y) f(x) \ge -\omega_f(r_{\varepsilon})$, puis $f(y) + \frac{1}{\varepsilon}||y x||^{\alpha} \ge f(y) \ge f(x) \omega_f(r_{\varepsilon})$. Ainsi $\forall y \in A(x)$,

$$f(y) + \frac{1}{\varepsilon} ||y - x||^{\alpha} \ge f(x) - \omega_f(r_{\varepsilon}).$$

En considérant la borne inférieure pour $y \in A(x)$, on en déduit $(T_{\varepsilon}f)(x) \ge f(x) - \omega_f(r_{\varepsilon})$. Finalement, $-\omega_f(r_{\varepsilon}) \le (T_{\varepsilon}f)(x) - f(x) \le 0$ donc $|(T_{\varepsilon}f)(x) - f(x)| \le \omega_f(r_{\varepsilon})$.

- 11. L'application ω_f est croissante et minorée (par 0) sur l'intervalle ouvert $]0, +\infty[$, donc par théorème, elle admet une limite réelle λ (≥ 0) en 0.
 - (i) \Rightarrow (ii) : Supposons que $(T_{1/n}f)_n$ converge uniformément sur \mathbb{R}^d vers f. Pour $n \geqslant 1$, on applique (9.a) pour $\varepsilon = \frac{1}{n}$ et $r = r_n = n^{-2/\alpha}$. Il vient

$$\omega_f(r_n) \leqslant |T_{1/n}f - f|_{\infty} + \frac{1}{n}.$$

La convergence uniforme donne $|T_{1/n}f - f|_{\infty} \xrightarrow[n \to +\infty]{} 0$, or $\omega_f(r_n) \xrightarrow[n \to +\infty]{} \lambda$. On passe à la limite dans l'inégalité large : $\lambda \leq 0$, ainsi $\lambda = 0$.

(i) \Leftarrow (ii) : Supposons $\lambda = 0$. Par (10), $|T_{1/n}f - f|_{\infty} \leqslant \omega_f \left(\left(2\frac{1}{n}|f|_{\infty}\right)^{1/\alpha}\right)$ qui tend vers 0 par hypothèse, donc $|T_{1/n}f - f|_{\infty} \xrightarrow[n \to +\infty]{} 0$, d'où la convergence uniforme.

Partie II

12. Pour montrer que $f + f_0$ est concave il suffit d'ajouter les inégalités. Examinons $g = \min(f, f_0)$. Soient $x, y \in \mathbb{R}^d$ et $\lambda \in [0, 1]$. On a

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y) \ge \lambda g(x) + (1 - \lambda)g(y)$$

et de même $f_0(\lambda x + (1 - \lambda)y) \ge \lambda g(x) + (1 - \lambda)g(y)$, donc $g(\lambda x + (1 - \lambda)y) \ge \lambda g(x) + (1 - \lambda)g(y)$. La fonction $g = \min(f, f_0)$ est donc concave. 13. Il s'agit de l'inégalité de Jensen. On note P(n) la propriété au rang n, en observant que P(2) est vraie par définition de la concavité.

Soit $n \ge 2$. Supposons P(n). Soient $x_1, \ldots, x_{n+1} \in \mathbb{R}^d$ et $\lambda_1, \ldots, \lambda_{n+1} \in [0, 1]$ tels que $\sum_{i=1}^{n+1} \lambda_i = 1$. Notons $s = \sum_{i=1}^n \lambda_i$, alors $s \in [0, 1]$ et $\lambda_{n+1} = 1 - s$. Si $s \ne 0$, notons $\lambda'_i = \lambda_i/s$.

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) = f\left(s\sum_{i=1}^n \lambda_i' x_i + (1-s)x_{n+1}\right) \geqslant sf\left(\sum_{i=1}^n \lambda_i' x_i\right) + (1-s)f\left(x_{n+1}\right)$$

par concavité de f. Utilisons alors P(n), vu $\sum_{i=1}^n \lambda_i' = 1$ et $\lambda_i' \geqslant 0$, donc $\lambda_i' \in [0,1]$:

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) \geqslant s \sum_{i=1}^{n} \lambda_i' f(x_i) + (1-s) f(x_{n+1}) = \sum_{i=1}^{n+1} \lambda_i f(x_i).$$

Si s = 0, alors $\lambda_1 = \dots = \lambda_n = 0$ et $\lambda_{n+1} = 1$ donc $f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) = f(x_{n+1}) = \sum_{i=1}^{n+1} \lambda_i f(x_i)$.

Ainsi P(n+1) est vraie, ce qui termine l'hérédité. P(n) est donc vraie pour tout entier $n \ge 2$.

- 14. $f(y) \ge \lambda f(x) + (1 \lambda)f(z)$ donc :
 - $\lambda(f(z) f(x)) \ge f(z) f(y)$, or $\lambda > 0$, donc $f(z) f(x) \ge \frac{f(z) f(y)}{\lambda}$;
 - $f(y) f(x) \ge (1 \lambda)(f(z) f(x))$, or $1 \lambda > 0$, donc $f(z) f(x) \le \frac{f(y) f(x)}{1 \lambda}$.
- 15. (a) Les X_i dépendent de la dimension d; notons-les plutôt $X_{d,i}$ dans cette question

On note $H(d): \forall x \in [-M, M]^d$, $\exists \lambda_1, \dots, \lambda_{2^d} \in [0, 1]$ de somme 1 tels que $x = \sum_{i=1}^{2^d} \lambda_i X_{d,i}$.

H(1) est vraie : $\forall x \in [-M, M], x = \lambda(-M) + (1 - \lambda)M$ en prenant $\lambda = \frac{M-x}{2M}$, qui est dans [0, 1].

Soit $d \ge 1$; supposons H(d). Soit $x = (x_1, \dots, x_{d+1}) \in [-M, M]^{d+1}$.

Soit $\lambda \in [0,1]$ tel que $x_{d+1} = \lambda(-M) + (1-\lambda)M$, alors

$$x = \lambda(x_1, \dots, x_d, -M) + (1 - \lambda)(x_1, \dots, x_d, M).$$

Par H(d) on dispose de $\lambda_1, \ldots, \lambda_{2^d} \in [0, 1]$ de somme 1 tels que

$$(x_1, \dots, x_d) = \sum_{i=1}^{2^d} \lambda_i X_{d,i} = \sum_{i=1}^{2^d} \lambda_i ((X_{d,i})_1, \dots, (X_{d,i})_d).$$

Ainsi, puisque $\sum_{i=1}^{2^d} \lambda_i = 1$,

$$x = \lambda \sum_{i=1}^{2^d} \lambda_i((X_{d,i})_1, \dots, (X_{d,i})_d, -M) + (1-\lambda) \sum_{i=1}^{2^d} \lambda_i((X_{d,i})_1, \dots, (X_{d,i})_d, M).$$

x est combinaison des 2^{d+1} vecteurs $X_{d+1,i}$ avec les coefficients $\lambda \lambda_i$ et $(1-\lambda)\lambda_i$ positifs, de somme $\lambda \sum_{i=1}^{2^d} \lambda_i + (1-\lambda)\sum_{i=1}^{2^d} \lambda_i = \lambda + (1-\lambda) = 1$. Ces coefficients appartiennent donc à [0,1]. Ainsi H(d) implique H(d+1), ce qui achève la démonstration.

(b) Soit m le minimum des nombres $f(X_1), \ldots, f(X_{2^d})$.

Pour tout $x \in [-M, M]^d$, soient $\lambda_1, \dots, \lambda_{2^d} \in [0, 1]$ de somme 1 tels que $x = \sum_{i=1}^{2^d} \lambda_i X_i$. Vu (13):

$$f(x) = f\left(\sum_{i=1}^{2^d} \lambda_i X_i\right) \geqslant \sum_{i=1}^{2^d} \lambda_i f(X_i) \geqslant \sum_{i=1}^{2^d} \lambda_i m = m.$$

Ainsi $f(x) - f(0) \ge m - f(0)$. La constante D = m - f(0), négative vu le cas x = 0, convient.

- (c) Soit $x \in [-M, M]^d$. Par concavité, $f(0) = f\left(\frac{1}{2}x + \frac{1}{2}(-x)\right) \geqslant \frac{1}{2}f(x) + \frac{1}{2}f(-x)$ or $f(-x) \geqslant f(0) + D$ vu (b). Ainsi $f(0) \geqslant \frac{1}{2}f(x) + \frac{1}{2}(f(0) + D)$ d'où $f(x) f(0) \leqslant -D = |D|$. On a aussi par (b) : $f(x) f(0) \geqslant -|D|$, donc $|f(x) f(0)| \leqslant |D|$.
- (d) Soient $x, y \in [-M/2, M/2]^d$. Quitte à échanger x et y, imposons $f(x) f(y) \ge 0$.

Imposons également $x \neq y$, le cas x = y étant évident.

Soit $t = \frac{M}{2\|y-x\|}$, bien défini et > 0, puis z = y + t(y-x). On a donc $y = \frac{t}{1+t}x + \frac{1}{1+t}z$.

Pour tout i de 1 à d, $|z_i| \leq |y_i| + t|y_i - x_i| \leq \frac{M}{2} + t||y - x|| = \frac{M}{2} + \frac{M}{2} = M$ donc $z \in [-M, M]^d$. Avec la question (c), et la question (14) appliquée à $\lambda = \frac{t}{1+t}$,

$$-2|D| \leqslant f(z) - f(0) + f(0) - f(x) = f(z) - f(x) \leqslant \frac{f(y) - f(x)}{1 - \lambda} = (1 + t)(f(y) - f(x)) \leqslant 0.$$

Ainsi,

$$2|D| \ge (1+t)|f(x) - f(y)| \ge \frac{M}{2||y-x||}|f(x) - f(y)|$$

donc $|f(x) - f(y)| \le 4|D| \frac{\|y - x\|}{M}$.

- (e) La restriction f_M de f à $[-M/2, M/2]^d$ est lipschitzienne, donc continue. Pour $x \in \mathbb{R}^d$, on peut choisir M assez grand pour que x soit intérieur à $[-M/2, M/2]^d$, alors f est continue au point x.
- 16. (a) Fixons $X_1 \in C$. L'ensemble $\{\|Y X\| ; \|Y X\| \le \|Y X_1\| \text{ et } X \in C\}$ admet un minimum, disons au point $X = Y_0$, en effet : l'espace ambiant est de dimension finie, l'application $X \mapsto \|Y X\|$ est continue, et $C_1 = C \cap B_f(Y, \|Y X_1\|)$ est
 - borné, car inclus dans la boule fermée $B_f(Y, ||Y X_1||)$;
 - fermé, comme intersection de deux fermés;
 - non vide vu $X_1 \in C_1$.

Comme $X_1 \in C_1$, $||Y - X_1|| \ge ||Y - Y_0||$. Pour tout $X \in C$,

- ou bien $X \in C_1$, alors $||Y X|| \ge ||Y Y_0||$ par définition de Y_0 ;
- ou bien $X \notin C_1$, donc $||Y X|| > ||Y X_1|| \ge ||Y Y_0||$.

Ainsi, $\forall X \in C$, $||Y - Y_0|| \le ||Y - X||$.

(b) Soit $X \in C$. Pour tout $t \in]0,1]$, le point $Z_t = (1-t)Y_0 + tX$ appartient à C, car C est convexe. On a donc par définition de Y_0 :

$$\|Y-Y_0\|^2 \leqslant \|Y-Z_t\|^2 = \|Y-Y_0+t(Y_0-X)\|^2 = \|Y-Y_0\|^2 + 2t\langle Y-Y_0 \,|\, Y_0-X\rangle + t^2\|Y_0-X\|^2.$$

On simplifie et on divise par t > 0: $0 \le 2\langle Y - Y_0 | Y_0 - X \rangle + t ||Y_0 - X||^2$, puis on fait tendre t vers 0. Il vient $0 \le 2\langle Y - Y_0 | Y_0 - X \rangle$, soit encore $\langle Y - Y_0 | X - Y_0 \rangle \le 0$.

(c) Supposons que Y_0 et Y_0' conviennent en (a). En prenant $X = Y_0'$ en (b), on obtient

$$\langle Y - Y_0 \mid Y_0' - Y_0 \rangle \leqslant 0.$$

On peut échanger les rôles, d'où symétriquement

$$\langle Y - Y_0' | Y_0 - Y_0' \rangle \leqslant 0.$$

On ajoute les deux : $\langle Y_0'-Y_0\,|\,Y_0'-Y_0\rangle=\|Y_0'-Y_0\|^2\leqslant 0$, donc $Y_0'=Y_0$, d'où l'unicité.

- 17. (a) C'est la conséquence directe de (16.a) avec $C = E_f$, $Y = (x_*, f(x_*) + \varepsilon)$ et $Y_0 = X_{\varepsilon}$, car E_f est convexe, fermé, non vide.
 - E_f est convexe : si (x, y), $(x', y') \in E_f$ et $\lambda \in [0, 1]$, notons $(x'', y'') = \lambda(x, y) + (1 \lambda)(x', y')$. On a $y'' = \lambda y + (1 - \lambda)y' \leq \lambda f(x) + (1 - \lambda)f(x')$ car (x, y) et $(x', y') \in E_f$, or par concavité de f, $\lambda f(x) + (1 - \lambda)f(x') \leq f(\lambda x + (1 - \lambda)x') = f(x'')$, ainsi $y'' \leq f(x'') : (x'', y'') \in E_f$.
 - E_f est fermé, car stable par passage à la limite, du fait de la continuité de f vue en (15.e), et de l'inégalité large dans la définition de E_f .
 - E_f n'est pas vide puisque $(0, f(0)) \in E_f$.

(b) $X_{\varepsilon} \in E_f \text{ donc } y_{\varepsilon} \leqslant f(x_{\varepsilon}).$

On est dans la situation du (16) avec $Y = (x_*, f(x_*) + \varepsilon)$ et $Y_0 = X_{\varepsilon}$. De plus $Y \notin C = E_f$, donc $Y \neq Y_0$. Pour 0 < t < 1, posons

$$X_t = tY + (1-t)Y_0 = (tx_* + (1-t)x_{\varepsilon}, tf(x_*) + t\varepsilon + (1-t)y_{\varepsilon}).$$

 $||Y - X_t|| = (1 - t)||Y - Y_0|| < ||Y - Y_0||$ (car $||Y - Y_0|| > 0$), donc par minimalité $X_t \notin E_f$, soit :

$$t f(x_*) + t\varepsilon + (1-t)y_{\varepsilon} > f(tx_* + (1-t)x_{\varepsilon}).$$

On fait tendre t vers 0, or f est continue, d'où : $y_{\varepsilon} \ge f(x_{\varepsilon})$. Finalement $y_{\varepsilon} = f(x_{\varepsilon})$.

(c) Soit $x \in \mathbb{R}^d$. On applique (16.b) avec $Y = (x_*, f(x_*) + \varepsilon)$, $Y_0 = (x_\varepsilon, f(x_\varepsilon))$, $X = (x, f(x)) \in E_f : 0 \ge \langle Y - Y_0 \mid X - Y_0 \rangle = 0$

$$\langle (x_* - x_\varepsilon, a(\varepsilon)) \mid (x - x_\varepsilon, f(x) - f(x_\varepsilon)) \rangle = \langle x_* - x_\varepsilon \mid x - x_\varepsilon \rangle + a(\varepsilon)(f(x) - f(x_\varepsilon))$$

$$= \langle x_* - x_\varepsilon \mid x - x_* + x_* - x_\varepsilon \rangle + a(\varepsilon)(f(x) - f(x_\varepsilon)) = \langle x_* - x_\varepsilon \mid x - x_* \rangle + \|x_* - x_\varepsilon\|^2 + a(\varepsilon)(f(x) - f(x_\varepsilon)).$$

(d) L'inégalité (c) vaut en particulier pour $x = x_* : 0 \ge ||x_* - x_\varepsilon||^2 + a(\varepsilon)(f(x_*) - f(x_\varepsilon))$, soit

$$(\Phi) : \|x_* - x_{\varepsilon}\|^2 + a(\varepsilon)(a(\varepsilon) - \varepsilon) \leqslant 0.$$

- Nécessairement, $a(\varepsilon)(a(\varepsilon) \varepsilon) \leq 0$ donc $a(\varepsilon)$ se situe entre les deux racines de $X(X \varepsilon)$: $0 \leq a(\varepsilon) \leq \varepsilon$. Mais si $a(\varepsilon) = 0$, l'inégalité (Φ) devient $||x_* x_{\varepsilon}||^2 \leq 0$ donc $x_* = x_{\varepsilon}$ or $a(\varepsilon) = 0 \iff f(x_{\varepsilon}) = f(x_*) + \varepsilon$. On a donc $f(x_*) = f(x_*) + \varepsilon$: contradiction, donc $a(\varepsilon) \neq 0$. Ainsi, $0 < a(\varepsilon) \leq \varepsilon$.
- L'inégalité (Φ) s'écrit $||x_* x_{\varepsilon}||^2 \le a(\varepsilon)(\varepsilon a(\varepsilon))$ où les deux facteurs sont positifs. Or pour tous réels $u, v \ge 0$, $\sqrt{uv} \le \frac{1}{2}(u+v)$, donc $uv \le \frac{1}{4}(u+v)^2$, ainsi

$$||x_* - x_\varepsilon||^2 \le a(\varepsilon)(\varepsilon - a(\varepsilon)) \le \frac{1}{4}(a(\varepsilon) + \varepsilon - a(\varepsilon))^2 = \frac{1}{4}\varepsilon^2$$

puis $||x_* - x_{\varepsilon}|| \leq \frac{\varepsilon}{2}$.

(e) On peut appliquer la question (15.d) à la fonction translatée $f^*: z \mapsto f(x_*+z)$, également concave ; la vérification est immédiate. Comme $||x_* - x_{\varepsilon}|| \leq \frac{\varepsilon}{2} \leq \frac{1}{2}$, on choisit M = 1 et une constante D associée. On a $|f^*(x_{\varepsilon} - x_*) - f^*(0)| \leq \frac{4|D|}{1}||x_{\varepsilon} - x_*||$ soit $|f(x_{\varepsilon}) - f(x_*)| \leq 4|D| \cdot ||x_{\varepsilon} - x_*||$.

On reprend (c) avec $x = x_* : ||x_* - x_{\varepsilon}||^2 \le a(\varepsilon)(f(x_{\varepsilon}) - f(x_*))$. On a donc

$$||x_* - x_\varepsilon||^2 \leqslant a(\varepsilon)(f(x_\varepsilon) - f(x_*)) \leqslant a(\varepsilon)4|D| \cdot ||x_\varepsilon - x_*||.$$

En divisant par $||x_* - x_{\varepsilon}||$, s'il est non nul, on obtient : $||x_* - x_{\varepsilon}|| \le a(\varepsilon)4|D|$, qui reste vrai lorsque $||x_* - x_{\varepsilon}|| = 0$. Rappelons que $a(\varepsilon) > 0$, ainsi : $\frac{1}{a(\varepsilon)}||x_* - x_{\varepsilon}|| \le 4|D|$.

- 18. (a) $b_{n+1}-a_{n+1}=\frac{1}{2}(b_n-a_n)$ donc $b_n-a_n=(b_0-a_0)/2^n$ par une récurrence évidente, ainsi $b_n-a_n\geqslant 0$ et $b_n-a_n\xrightarrow[n\to+\infty]{}0$. Ensuite, $a_{n+1}-a_n=\frac{1}{2}(b_n-a_n)$ ou 0, donc $a_{n+1}-a_n\geqslant 0$ pour tout $n:(a_n)$ est croissante. De même, (b_n) est décroissante. Les suites (a_n) et (b_n) sont donc adjacentes.
 - (b) On note P(n) la propriété : $\{k \in \mathbb{N} : a_n \leq u_k \leq b_n\}$ est infini. La propriété P(0) est vraie. Soit $n \in \mathbb{N}$, supposons P(n). On a

$$\left\{k \in \mathbb{N} \; ; \; a_n \leqslant u_k \leqslant b_n\right\} = \left\{k \in \mathbb{N} \; ; \; a_n \leqslant u_k \leqslant \frac{a_n + b_n}{2}\right\} \cup \left\{k \in \mathbb{N} \; ; \; \frac{a_n + b_n}{2} \leqslant u_k \leqslant b_n\right\}.$$

Vu P(n), l'un au moins de ces deux ensembles est infini. Si le premier est infini, par définition $a_{n+1}=a_n$ et $b_{n+1}=\frac{a_n+b_n}{2}$, donc $\{k\in\mathbb{N}\,;\,a_{n+1}\leqslant u_k\leqslant b_{n+1}\}$ est infini. Sinon, le deuxième est infini, $a_{n+1}=\frac{a_n+b_n}{2}$, $b_{n+1}=b_n$, donc $\{k\in\mathbb{N}\,;\,a_{n+1}\leqslant u_k\leqslant b_{n+1}\}$ est infini. Ainsi P(n+1) est vraie. Par principe de récurrence, P(n) est vraie pour tout $n\in\mathbb{N}$.

- (c) D'après (a) les suites (a_n) et (b_n) convergent, et ont la même limite $\ell \in \mathbb{R}$. On définit par récurrence une suite d'entiers naturels $(\varphi(0), \varphi(1), \dots)$ ainsi : on pose $\varphi(0) = 0$, puis ayant défini $\varphi(0), \varphi(1), \dots, \varphi(n-1)$ on sait que $\{k \in \mathbb{N} : a_n \leq u_k \leq b_n\}$ est infini ; on peut donc choisir $\varphi(n)$ dans cet ensemble, avec $\varphi(n) > \varphi(n-1)$. On obtient une suite $(\varphi(n))_{n\geqslant 0}$ strictement croissante, telle que $a_n \leq u_{\varphi(n)} \leq b_n$ par construction. Par encadrement, $u_{\varphi(n)} \xrightarrow[n \to +\infty]{} \ell$.
- 19. On applique (17.e) avec $\varepsilon = 1/n \in]0,1]$. Posons

$$p_n = (p_{1,n}, \dots, p_{d,n}) = \frac{1}{a(1/n)} (x_{1/n} - x_*) \in \mathbb{R}^d.$$

La suite $(p_n)_{n\geqslant 1}$ est bornée, donc les d suites $(p_{i,n})_{n\geqslant 1}$ sont des suites réelles bornées. Avec (18), par d extractions successives, on obtient l'existence d'une suite extraite $(p_{\varphi(n)})$ qui converge vers un certain $p_* \in \mathbb{R}^d$. En effet : il existe une extractrice φ_1 telle que la suite $(p_{1,\varphi_1(n)})_{n\geqslant 1}$ converge vers un réel ℓ_1 . La suite $(p_{2,\varphi_1(n)})_{n\geqslant 1}$ étant bornée, il existe une extractrice φ_2 telle que la suite $(p_{2,\varphi_1(\varphi_2(n))})_{n\geqslant 1}$ converge vers un réel ℓ_2 ; on note que $(p_{1,\varphi_1(\varphi_2(n))})_{n\geqslant 1}$ converge encore vers ℓ_1 . On continue ainsi, d'où une extractrice $\varphi = \varphi_1 \circ \cdots \circ \varphi_d$ telle que $(p_{\varphi(n)})$ converge dans \mathbb{R}^d .

Par (17.c) et stricte positivité de $a(\varepsilon)$, pour tout $x \in \mathbb{R}^d$,

$$(\Psi) : f(x) - f(x_{1/\varphi(n)}) \leqslant \left\langle x - x_* \left| \frac{x_{1/\varphi(n)} - x_*}{a(1/\varphi(n))} \right\rangle - \frac{\|x_* - x_{1/\varphi(n)}\|^2}{a(1/\varphi(n))} \right\rangle.$$

De $0 < a(\varepsilon) \le \varepsilon$ par (17.d), on tire $a(1/\varphi(n)) \xrightarrow[n \to +\infty]{} 0$, puis

$$x_{1/\varphi(n)} - x_* = a(1/\varphi(n)) \times p_{\varphi(n)} \xrightarrow[n \to +\infty]{} 0 \times p_* = 0.$$

En écrivant

$$\frac{\|x_* - x_{1/\varphi(n)}\|^2}{a(1/\varphi(n))} = \|x_* - x_{1/\varphi(n)}\| \cdot \frac{\|x_* - x_{1/\varphi(n)}\|}{a(1/\varphi(n))} = \|x_* - x_{1/\varphi(n)}\| \cdot \|p_{\varphi(n)}\|$$

on voit que ceci converge vers 0. On passe à la limite dans l'inégalité large (Ψ) , f étant continue :

$$f(x) - f(x_*) \leqslant \langle x - x_* \mid p_* \rangle.$$

20. Soit $g: \mathbb{R}^d \to \mathbb{R}$ convexe et concave. Soit $x_* \in \mathbb{R}^d$. Comme g et g' = -g sont concaves, on dispose de vecteurs p_* et p'_* comme en (19):

$$g(x) - g(x_*) \leq \langle p_* | x - x_* \rangle ; \quad -g(x) + g(x_*) \leq \langle p'_* | x - x_* \rangle$$

pour tout $x \in \mathbb{R}^d$. En ajoutant les deux, il vient $0 \leqslant \langle p_* + p'_* | x - x_* \rangle$ donc pour tout $y \in \mathbb{R}^d$, $0 \leqslant \langle p_* + p'_* | y \rangle$. En prenant alors -y au lieu de y, on obtient $\langle p_* + p'_* | y \rangle = 0$: $p_* + p'_*$ est orthogonal à tout vecteur de \mathbb{R}^d , en particulier à lui-même, donc $p_* + p'_* = 0$. Ceci montre que $p'_* = -p_*$, ainsi $-g(x) + g(x_*) \leqslant \langle p'_* | x - x_* \rangle \iff -g(x) + g(x_*) \leqslant \langle -p_* | x - x_* \rangle \iff g(x) - g(x_*) \geqslant \langle p_* | x - x_* \rangle$. Finalement, $g(x) - g(x_*) = \langle p_* | x - x_* \rangle$. g est donc du type $x \mapsto \alpha + \langle \beta | x \rangle$ avec $(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^d$.

Réciproquement, $\forall (\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^d$, la fonction $x \mapsto \alpha + \langle \beta | x \rangle$ est clairement convexe et concave.

Partie III

21. Soit $x \in \mathbb{R}^d$. $(T_{\varepsilon}f)(x) = \inf \left\{ f(y) + \frac{1}{\varepsilon} ||y - x||^2 ; y \in \mathbb{R}^d \right\}$ donc

$$(T_{\varepsilon}f)(x) - \frac{1}{\varepsilon} ||x||^2 = \inf \left\{ f(y) + \frac{1}{\varepsilon} (||y - x||^2 - ||x||^2); y \in \mathbb{R}^d \right\}$$

or $\|y-x\|^2 - \|x\|^2 = \langle y-x+x \mid y-x-x \rangle = \langle y \mid y-2x \rangle$ donc $f(y) + \frac{1}{\varepsilon} (\|y-x\|^2 - \|x\|^2) = f(y) + \frac{1}{\varepsilon} \langle y \mid y-2x \rangle$ ce qui définit une fonction concave de la variable x (voir question (20)).

Ainsi $(T_{\varepsilon}f)(x) - \frac{1}{\varepsilon}||x||^2 = \inf\{g_y(x); y \in \mathbb{R}^d\}$ avec les g_y concaves. On procède alors comme dans la question (12) pour le minimum de deux fonctions concaves, d'où $x \mapsto (T_{\varepsilon}f)(x) - \frac{1}{\varepsilon}||x||^2$ est concave.

22. La fonction $g: x \mapsto f(x) - K||x||^2$ est concave. Soit $x \in \mathbb{R}^d$. Par (19), il existe $q_x \in \mathbb{R}^d$ tel que $\forall y \in \mathbb{R}^d$, $g(y) - g(x) \leq \langle q_x | y - x \rangle$ soit

$$f(y) - f(x) \le \langle q_x | y - x \rangle + K ||y||^2 - K ||x||^2 = \langle q_x | y - x \rangle + K \langle y + x | y - x \rangle$$

puis en décomposant y + x = 2x + (y - x),

$$f(y) - f(x) \le \langle q_x + 2Kx | y - x \rangle + K ||y - x||^2.$$

Le vecteur $p_x = q_x + 2Kx$ convient.

- 23. (a) $f(y) K||y x||^2 = f(y) K||y||^2 + K(||y||^2 ||y x||^2) = f(y) K||y||^2 + K\langle 2y x | x \rangle$ or $y \mapsto f(y) K||y||^2$ et $y \mapsto K\langle 2y x | x \rangle$ sont concaves, donc leur somme aussi d'après (12). La fonction $y \mapsto f(y) K||y x||^2$ est donc concave, pour tout x fixé.
 - (b) Soient $x, y \in \mathbb{R}^d$ tels que $||x y|| \le 1$. La fonction $z \mapsto f(z) K||z x||^2$ étant concave, sa translatée $\varphi_x : z \mapsto f(z+x) K||z||^2$ l'est aussi.

On lui applique (15.d) pour M=2 avec une constante D qui ne dépend pas de x. En effet, f est bornée donc pour tout $z \in [-2,2]^d$,

$$\varphi_x(z) - \varphi_x(0) = f(z+x) - K||z||^2 - f(x) \geqslant -2|f|_{\infty} - 4Kd.$$

La constante $D = -2|f|_{\infty} - 4Kd$ convient.

Comme $z_0 = y - x$ vérifie $||z_0|| \le 1$, on a aussi $z_0 \in [-1, 1]^d$ donc

$$|\varphi_x(0) - \varphi_x(z_0)| \le \frac{4|D|}{M} ||0 - z_0||$$

soit $|f(x) - f(y) + K||y - x||^2| \le 2|D| \cdot ||y - x||$. On termine avec l'inégalité triangulaire :

$$|f(x) - f(y)| = |f(x) - f(y) + K||y - x||^2 - K||y - x||^2|$$

On a donc $|f(x) - f(y)| \le K' ||y - x||$ en posant $K' = 2|D| + K = 4|f|_{\infty} + 8Kd + K$.

(c) Soient $x, y \in \mathbb{R}^d$ tels que ||x - y|| > 1. Prenons un entier $k \ge ||x - y||$ et posons $x_j = x + \frac{j}{k}(y - x)$ pour j = 0, 1, ..., k. Alors $x_0 = x$, $x_k = y$, et pour j < k, $||x_{j+1} - x_j|| = \frac{1}{k}||x - y|| \le 1$ donc, d'après (b), $|f(x_{j+1}) - f(x_j)| \le K' ||x_{j+1} - x_j|| = K' \frac{1}{k} ||x - y||$. On a

$$|f(x) - f(y)| = \left| \sum_{j=0}^{k-1} f(x_{j+1}) - f(x_j) \right| \le \sum_{j=0}^{k-1} |f(x_{j+1}) - f(x_j)| \le K' \sum_{j=0}^{k-1} \frac{1}{k} ||x - y||$$

soit $|f(x) - f(y)| \le K' ||x - y||$.

- 24. (a) Soit $x \in \mathbb{R}^d$. Avec (22), on a l'entier p_x . En appliquant (22) à -f, on a un entier p_x' tel que $-f(y) + f(x) \leq \langle p_x' | y - x \rangle + K ||y - x||^2$ pour tout y. Ainsi, $\langle -p_x' | y - x \rangle - K ||y - x||^2 \leq f(y) - f(x)$ donc le vecteur $q_x = -p_x'$ convient.
 - (b) Soit $u \in \mathbb{R}^d$. Posons y = x + tu pour t > 0. D'après (a), $\langle q_x | tu \rangle Kt^2 ||u||^2 \leqslant \langle p_x | tu \rangle + Kt^2 ||u||^2$. On divise par t puis on fait tendre t vers 0. Il vient : $\langle q_x | u \rangle \leqslant \langle p_x | u \rangle$ soit $\langle p_x q_x | u \rangle \geqslant 0$. Cela vaut pour -u, donc $\langle p_x q_x | u \rangle = 0$. En prenant $u = p_x q_x$, on en déduit $p_x q_x = 0$.
 - (c) Soit i entier tel que $1 \le i \le d$. Posons $y = x + te_i$ pour t > 0. D'après (a) et (b),

$$\langle p_x | e_i \rangle - Kt \leqslant \frac{1}{t} (f(x + te_i) - f(x)) \leqslant \langle p_x | e_i \rangle + Kt$$

donc $\frac{1}{t}(f(x+te_i)-f(x)) \xrightarrow[t\to 0^+]{} \langle p_x \mid e_i \rangle$. De même en 0^- . Ceci prouve que la dérivée partielle $\frac{\partial f}{\partial x_i}(x)$ est bien définie, avec $\frac{\partial f}{\partial x_i}(x) = \langle p_x \mid e_i \rangle = e_i^*(p_x)$ (*i*-ième coordonnée de p_x dans la base e). Ainsi, $\nabla f(x)$ est bien défini, et $\nabla f(x) = p_x$.

(d) Soient $x, y, h \in \mathbb{R}^d$. On applique (a) au couple (x, y + h), sachant que $p_x = q_x = \nabla f(x)$:

$$(E_1)$$
: $-K||y+h-x||^2 \le f(y+h) - f(x) - \langle \nabla f(x) | y+h-x \rangle \le K||y+h-x||^2$

On considère (E_1) pour h=0:

$$(E_2): -K||y-x||^2 \le f(y) - f(x) - \langle \nabla f(x) | y-x \rangle \le K||y-x||^2$$

On considère (E_1) pour x = y:

$$(E_3): -K\|h\|^2 \le f(y+h) - f(y) - \langle \nabla f(y) | h \rangle \le K\|h\|^2$$

Alors $(E_1) - (E_2) - (E_3)$ donne:

$$-K(\|h\|^2 + \|y + h - x\|^2 + \|y - x\|^2) \leqslant \langle \nabla f(y) - \nabla f(x) \,|\, h \rangle \leqslant K(\|h\|^2 + \|y + h - x\|^2 + \|y - x\|^2)$$

d'où
$$|\langle \nabla f(y) - \nabla f(x) | h \rangle| \le K(\|h\|^2 + \|y + h - x\|^2 + \|y - x\|^2).$$

(e) On suppose le vecteur $v = \nabla f(x) - \nabla f(y)$ non nul, le résultat étant évident sinon.

On choisit le vecteur $h = \frac{\|x-y\|}{\|v\|}v$, donc $\|h\| = \|x-y\|$, et

$$\langle v \mid h \rangle = ||v|| \cdot ||x - y||.$$

Par (d):

$$|\langle v | h \rangle| \le K(\|h\|^2 + \|y + h - x\|^2 + \|y - x\|^2).$$

On a $||y + h - x|| \le ||y - x|| + ||h|| = 2||h||$ et ||x - y|| = ||h||, donc

$$|\langle v | h \rangle| \le K(\|h\|^2 + 4\|h\|^2 + \|h\|^2) = 6K\|h\|^2.$$

Ainsi, $||v|| \cdot ||x - y|| \le 6K||y - x||^2$, donc en divisant par $||y - x|| \ne 0$:

$$\|\nabla f(x) - \nabla f(y)\| \leqslant 6K\|y - x\|.$$

La fonction ∇f est lipschitzienne, donc continue, ainsi f est de classe C^1 .

