Mon parcours pour réussir en maths
Je révise en autonomie
Je progresse avec un prof
Je m’entraîne sur des annales corrigées
Avis Google France
★★★★★ 4,9 sur 5
Corrigé du sujet EDHEC Maths ECS 2016
Revenir à tous les corrigés des annales maths BCE
Exercice 1 : Scilab, dérivation et variation de suite
1/ a/ La fonction
est dérivable sur
comme quotient de deux fonctions dérivables dont le dénominateur ne s’annule pas sur
, et on a :
sur ![]()
Donc la fonction
est strictement décroissante sur
.
De plus,
et
(pas des formes indéterminées)

b/ Par récurrence immédiate de la propriété
est bien défini et ![]()
function y=f(x,n)
if x==1 then y=n
else y=(1-x^(n+1))/(1-x)-1
endfunction
2/ Les script calculent les termes successifs de la suite, mais le premier script s’arrête lorsque u<=0.00001 et le second lorsque u>=100000, n sert de compteur, il indique l’indice du dernier terme calculé.
Conclusion :
et
et ce sont les premiers termes de la suite à vérifier ces inégalités.
De telles écarts peuvent nous faire conjecturer que la suite n’admet pas de limite (et même que la suite des termes de rang pair tend vers
et celle des termes de rang impair tend vers
).
3/ a/
est évidemment dérivable sur
et
sur
.
La fonction
est donc continue et strictement décroissante sur
, elle réalise alors une bijection de
sur ![]()
b/ Sur
,
ssi ![]()
ssi
ssi
.
Or d’après la question précédente
possède un unique antécédent dans
par
. On le note alors
.
c/ Déterminons le signe de
et
:
On a :
,
or ![]()
donc par croissance de la fonction exponentielle
,
donc en inversant ![]()
et donc
.
Plus simplement,
, puisque
.
En conclusion :
, or comme
est strictement décroissante
on a donc :
.
4/ a/ On peut calculer :
,
et
.
Or pour cette dernière,
donc ![]()
et on a alors bien
donc
.
Pour l’autre inégalité, il suffit de remarquer que
est décroissante de :
on tire
soit ![]()
b/ Montrons que
est croissante. Pour cela, on peut montrer par récurrence que, pour tout
:
![]()
L’initialisation a été faite en (a).
Supposons que
pour un certain rang
fixé, on a alors en composant par
(décroissante) :
![]()
et en composant encore une fois par
(décroissante) :
![]()
La propriété est alors initialisée pour
et elle est héréditaire, elle est donc vraie pour tout
.
Conclusion :
est croissante.
Pour
c’est plus simple : comme
est croissante on a pour tout
:
![]()
en composant par
(décroissante), on a alors, pour tout
:
![]()
et
est alors bien décroissante.
5/ a/ Pour
,
![]()
= 
= 
= ![]()
= ![]()
De plus, d’après la question 1., on a :
et
,
donc par composition de limite :
,
donc
est bien continue en
.
b/ Soit
. On a :
ssi ![]()
ssi ![]()
L’équation
n’admet donc que deux solutions sur
:
et
.
c/
est décroissante et minorée (par
) donc elle converge vers une limite
(d’après la question 3.(c)),
de plus
, donc
vérifie
.
Donc, compte tenu de ce qui précède et du fait que
on a nécessairement
.
d/ Si
alors grâce à
continue sur
,
on aurait
, ou encore
, d’après la question précédente.
Ceci est absurde puisque
n’a pas d’antécédent par
d’après la question 1.(a).
Conclusion :
diverge, de plus, étant croissante, sa limite ne peut être que
.
COURS DE MATHS
Les meilleurs professeurs particuliers
Pour progresser et réussir
Avis Google France ★★★★★ 4,9 sur 5
Exercice 2 : Algèbre linéaire
1/ a/
et
commutent, donc :
![]()
b/ D’après la question précédente,
donc pour tout
, on a :
![]()
soit : ![]()
c/ ![]()
donc, pour tout
,
.
De plus,
.
Donc, avec (b), tout vecteur
de
peut s’écrire comme somme d’un vecteur de
et d’un vecteur de
,
on a alors
.
Reste à montrer que
pour avoir une somme directe :
Si
alors il existe
tel que
et
.
Développons alors
, cela revient à :
que l’on applique à
pour obtenir :
![]()
Soit :
![]()
Conclusion : ![]()
2/ a/ On peut poser
, puis on trouve en identifiant :
et
.
Conclusion :
.
b/ Comme dans la question 1., on a cette fois-ci à partir de ![]()
![]()
Donc, pour tout
:
![]()
Or l’énoncé nous dit que :
,
donc ![]()
de plus
.
Donc
.
De plus, de
on a
est annulateur de ![]()
et comme dans la question 1., si ![]()
alors ![]()
soit
,
donc
.
3/ a/
, il existe donc
tels que
.
De plus
et
.
Donc d’après l’énoncé,
et
.
b/ Si
, comme précédemment, il existe
tel que
et ![]()
(remarque : et plus généralement
pour tout entier
).
étant annulateur de
, on a
,
soit : ![]()
et donc d’après la remarque précédente :
.
Or,
donc
.
Conclusion :
.
De plus
, donc
ou encore :
![]()
On a aussi :
.
Donc pour tout
:
![]()
Donc
et avec ce qui précède :
.
c/ C’est plutôt clair, avec dans la question 1. ![]()
et dans la question 2. ![]()
qui vérifient bien
et
.
Exercice 3 : fonction à 2 variables et matrice hessienne
1/ a/ On a :


Donc :
![]()
= 
2/ a/
est bien de classe
, par la somme de la composée et de quotient de fonctions de classe
(polynômes) dont le dénominateur ne s’annule pas sur
et de la composée de la fonction
qui est bien
sur
.
b/ On a :
et :

On cherche les points critiques donc :
![Rendered by QuickLaTeX.com \left\{ \begin{array}{l} \partial_1(f)(\theta_1,\theta_2)=0\\[7mm] \partial_2(f)(\theta_1,\theta_2)=0 \end{array} \right.](https://groupe-reussite.fr/ressources/wp-content/ql-cache/quicklatex.com-6c2300b47ffba7a28a7de68335b64644_l3.png)



Or, d’après la première ligne
donc en remplaçant dans la deuxième ligne, on a :
![Rendered by QuickLaTeX.com \left\{ \begin{array}{l} \partial_1(f)(\theta_1,\theta_2)=0\\[7mm] \partial_2(f)(\theta_1,\theta_2)=0 \end{array} \right.](https://groupe-reussite.fr/ressources/wp-content/ql-cache/quicklatex.com-6c2300b47ffba7a28a7de68335b64644_l3.png)

On remarque alors que
est uniquement déterminé par les ![]()
et
est lui aussi uniquement déterminé par les
et
(qui est unique).
Conclusion :
admet un unique point critique
sur
et
vérifie :
et ![]()
c/ Calculons les dérivées partielles d’ordre 2 de
:
;
![]()
et ![]()
Donc en
, avec par définition
et ![]()
(voir la question 2.(b)), on a :
![]()
![]()
et

d/ La matrice hessienne de
en
est donc diagonale et ses valeurs propres :
et
sont strictement négatives,
admet donc un maximum local en
.
e/
admet donc un maximum local en
signifie qu’il existe un voisinage
de
tel que
,
or
et la fonction exponentielle étant croissante, on a
.
Conclusion :
admet bien un maximum local en
.
3/ On a :
![]()
![]()
![]()
.
Donc
est bien un estimateur sans biais de
.
4/ Rappelons que pour tout
,
.
On a alors :
![]()

Or, ![]()
donc : 

mais par indépendance avec
:
donc :
![]()
La dernière somme compte
termes,
donc : 
![]()
![]()
En revenant à
on a alors :
![]()
![]()
Conclusion :
est un estimateur asymptotiquement sans biais de
.
5/ a/
étant un estimateur sans biais de
, il suffit, pour qu’il soit convergent, que
.
Or, on a :
, donc
converge bien en probabilité vers
.
Puisque la fonction réelle
est continue, on peut en déduire que la suite
converge en probabilité vers
.
b/ On a la loi de
, une densité de
est
.
Pour que
possède un moment d’ordre 4 il faut que l’intégrale
soit absolument convergente (ou tout simplement converge, l’intégrale étant positive).
Or, par croissance comparée,
,
donc
,
donc
et
convergent et
admet bien un moment d’ordre 4.
Par conséquent
admet un moment d’ordre 2, on peut donc utiliser la loi faible des grands nombres avec
(Koenig-Huygens) :
converge en probabilité vers ![]()
c/ ![]()
soit encore en ajoutant et retranchant
:

Or, si
alors
ou
,
car sinon, par inégalité triangulaire :
![]()
Donc :
![]()
et ![]()
Ce qu’il fallait démontrer.
5/ d/ Il suffit pour cela de montrer que
converge en probabilité vers
. Or, pour tout
, on a :
![]()
![]()
mais, d’après la question 5. (b),
converge en probabilité vers ![]()
ce qui revient à ![]()
et, d’après la question 5. (a),
converge en probabilité vers ![]()
ce qui revient à
.
On a alors bien :
![]()
et
est bien un estimateur convergent de
.
COURS A DOMICILE
Des cours sur mesure de qualité
POUR ACCÉLÉRER MA PROGRESSION
Avis Google France ★★★★★ 4,9 sur 5
Problème : Algèbre linéaire et probabilité avec les chaines de Markov
Partie 1 : Résultats préliminaires
1/ Pour tout
et tout
, le coefficient situé à l’intersection de la
ligne et de la
colonne de
est donné par :
et par somme finie de limites, on a :
![]()
qui n’est rien d’autre que le coefficient situé à l’intersection de la
ligne et de la
colonne de
.
Conclusion : on a donc bien
.
2/ En considérant la matrice colonne
, on a dans ce cas
.
est donc bien une valeur propre de
.
3/ On utilise le résultat bien connu : pour toutes matrices
et
de
,
que l’on redémontre ici :
![]()
![]()
![]()
Or, si
est diagonalisable il existe une matrice diagonale
constituées des valeurs propres de
et une matrice inversible
telles que :
. On a alors :
![]()
![]()
d’après le résultat redémontré précédemment.
Conclusion : Si
est diagonalisable alors
est égal à la somme de ses valeurs propres.
Partie 2 : Étude de la matrice d’une chaîne de Markov
4/Tout d’abord, il faut remarquer que, les tirages étant des échanges, il y a toujours 3 boules dans chaque urnes.
De plus, si l’urne
contient
boules blanches alors elle contient aussi
boules noires et dans ce cas l’urne
contient
boules noires et
boules blanches.
- Si l’urne
contient
boule blanche alors un échange donnera nécessairement
boules blanche dans l’urne
.
Donc :
. - Si l’urne
contient
boule blanche alors un échange donnera nécessairement
boules blanche dans l’urne
.
Donc :
. - Dans les autres cas, si l’urne
contient
boules blanches alors au prochain tirage elle ne pourra en contenir que
,
ou
.
Pour rester avec le même nombre
de boules dans
, il faut choisir une boule noire dans
et une boule noire dans
ou alors il faut choisir une boule blanche dans
et une boule blanche dans
.
On a donc : ![]()
Soit : ![]()
Pour augmenter le nombre de boules blanches d’une unité il faut choisir une boule noire dans
et une boule blanche dans
.
Donc : 
Pour diminuer le nombre de boules blanches d’une unité il faut choisir une boule blanche dans
et une boule noire dans
.
Donc : 
5/ a/ La matrice
est donnée par :

Soit, d’après la question précédente :

qui est bien la matrice donnée à la question 12.
b/ Pour tout
, d’après la formule des probabilités totales avec le système complet d’événements
, on a :
![]()
![]()
![]()
![]()
L’égalité demandée est donc vraie pour le
coefficient de
.
Or, ceci étant vrai pour tout
, on bien :
Pour tout entier
admis pour
et 2
c/ Par une récurrence immédiate
6/ a/ La somme des coefficients d’une ligne de
vaut toujours 1, donc d’après la question 2., 1 est valeur propre de
.
b/ Un simple calcul donne :
![]()
et ![]()
Donc
est bien un vecteur propre de
associé à la valeur propre
et
est bien un vecteur propre de
associé à la valeur propre
.
c/ Si
est diagonalisable alors, d’après la question 3., la somme des valeurs propres de
doit être égale à
.
On a déjà 3 valeurs propres de
, la dernière
vérifie donc :
et donc
.
Montrons que
n’est pas inversible ou, ce qui revient au même, montrons que
n’est pas inversible :
On a :
.
Les étapes successives suivantes :

donnent la matrice :

qui n’est pas inversible, donc
n’est pas inversible.
Conclusion :
est bien valeur propre de
qui possède alors 4 valeurs propres distinctes et est donc bien diagonalisable.
Remarque : pour montrer que
n’est pas inversible, on aurait pu aussi montrer que : ![]()
Partie 3 : Recherche d’une loi stationnaire
7/ D’après la question précédente,
est diagonalisable.
De plus un vecteur propre associé à la valeur propre
est le vecteur ne contenant que des « 1 » (voir la question 2.).
Il existe donc une matrice inversible
(constituée de vecteurs propres dont le premier peut être le vecteur propre ne contenant que des « 1 ») et une matrice diagonale
telles que
.
8/ Une récurrence immédiate montre que, pour tout
,
.
Or,
étant diagonale, on a ![]()
De plus ![]()
![]()
![]()
donc
et d’après les résultats admis dans les préliminaires :
![]()
9/ a/ De
on tire
, soit :


En identifiant chaque coefficient de la première ligne du résultat de ces produits, on obtient alors :
![Rendered by QuickLaTeX.com \left\{ \begin{array}{lllll} & \dfrac{1}{9}\times\ell_2 & & & = \ell_1\\ \ell_1 & + \dfrac{4}{9}\ell_2 & + \dfrac{4}{9}\ell_3 & & = \ell_2\\[2mm] & \dfrac{4}{9}\ell_2 & + \dfrac{4}{9}\ell_3 & + \ell_4 & = \ell_3\\ & & \dfrac{1}{9}\ell_3 & & = \ell_4 \end{array} \right.](https://groupe-reussite.fr/ressources/wp-content/ql-cache/quicklatex.com-3df2f18a45ad04ebb6acf1150bbdf451_l3.png)
De
et
on tire :
et ![]()
et de ![]()
et on a alors bien :
et ![]()
b/ On a
et d’après la question 7., la première colonne de
ne contient que des « 1 », donc :

On a donc :
, mais comme
et
cela revient alors à :
donc :
![]()
10/ ![]()

Soit :


Or,
et
, donc :

11/ a/ Tout d’abord, on a :
. Utilisons les événements suggérés par l’énoncé :
,
donc par la formule des probabilités composées :
![]()
![]()
.
De même :
![]()
et par incompatibilité et par la formule des probabilités composées :
![]()
![]()
.
Pour
, on trouve alors
et
![]()
.
Conclusion : la loi de
est donnée par :
![]()
b/ On a :

et
.
Un simple calcul donne :
,
est donc bien un vecteur propre de
associé à la valeur propre 1.
c/ Pour cela il suffit de montrer que :
.
Or, d’après la question 5.(c), on a, pour tout
;
, avec ![]()
et grâce aux résultats admis dans les préliminaires,
![]()
mais d’après la question 10., 
un simple calcul montrer alors bien que
.
Conclusion : la suite X_n converge alors bien en loi vers X.
d/ Le programme renvoie la suite des
premiers états suivants l’état initial
(pour avoir des valeurs comprises entre 1 et 4, puis on soustrait 1 à chaque coefficient du vecteur renvoyé).
Autrement dit, le programme simule l’expérience et donne le nombre de boules blanches dans l’urne
lors des
premiers tirages.
Ensuite, le programme calcule la moyenne des nombres d’états où
(l’urne
n’a pas de boule blanche),
on peut donc supposer que
sera proche de
lorsque
est assez grand.
