Chapitres Maths en ECG1
Chapitres Maths en ECG1
Cours : Convergences et approximations en ECG1
Résumé de cours Exercices Corrigés
Cours en ligne de Maths en ECG1
Méthodes – Inégalités & convergences de suites de variables aléatoires
Méthode 1 : Savoir utiliser l’inégalité de Markov.
On rappelle l’inégalité de Markov : si est une variable aléatoire positive ayant une espérance, alors pour tout on a
L’inégalité de Markov sert souvent à établir des inégalités à condition de reconnaître la loi d’une variable aléatoire classique à valeurs positives.
Exemple : Soit Montrer que pour tout
Réponse :
On introduit une variable aléatoire suivant une loi de Poisson de paramètre est à valeurs positives et admet une espérance égale à
Méthode 2 : Savoir utiliser l’inégalité de Bienaymé-Tchebychev.
Soit une variable aléatoire ayant une variance. Alors, pour tout
Cette inégalité servira notamment dans les méthodes suivantes lorsque l’on parlera de convergence de suites de variables aléatoires.
Exemple : Soit une variable aléatoire d’espérance et de variance Montrer que, pour tout
Réponse : On applique l’inégalité de Bienaymé-Tchebychev à cela donne :
On conclut en passant à l’événement complémentaire.
PROF DE MATHS PARTICULIER
Des cours de qualité et enseignants aguerris
Préparer des concours ou s'exercer
Avis Google France ★★★★★ 4,9 sur 5
Méthode 3 : Sur la convergence en probabilité.
On rappelle qu’une suite de variables aléatoires converge en probabilité vers une variable aléatoire si : pour tout
On écrit
Les inégalités de Markov et de Bienaymé-Tchebychev sont très utiles pour montrer la convergence en probabilité.
Méthode 4 : Sur la convergence en loi.
On suppose que pour tout est une variable aléatoire réelle définie sur de fonction de répartition et que une variable aléatoire réelle définie sur le même espace probabilisé dont on note la fonction de répartition.
On dit que la suite de variables aléatoires converge vers en loi si
en tout point où est continue. On écrit
Dans le cas où les variables aléatoires et sont à valeurs dans il est plus simple d’utiliser la caractérisation suivante : la suite de variables aléatoires converge en loi vers si et seulement si,
pour tout
On retiendra le résultat suivant au programme :
Soit et une suite de réels de telle que On suppose que tout suit une loi binomiale de paramètres et
Alors converge en loi vers une variable aléatoire de loi de Poisson de paramètre
Méthode 5 : Utiliser le théorème central limite pour des variables aléatoires binomiales ou de loi de Poisson.
On rappelle l’énoncé :
Si est une suite de variables aléatoires telle que suit une loi binomiale (respectivement de loi ), alors la suite de variables aléatoires centrées réduites converge en loi vers une variable aléatoire suivant la loi normale centrée réduite.
On rappelle que
Le théorème dit que
Si suit une loi
Si suit une loi on a
Exemple : Dans un stade, il y a supporters. On estime qu’un supporter mange un sandwich avec une probabilité de et le choix de manger un sandwich ou non ne dépend pas de ce que font les autres supporters.
Combien le club doit-il acheter de sandwichs pour que la probabilité qu’il y ait rupture de stock soit inférieur à ?
Indications :
On admettra que l’on peut approcher une loi binomiale de paramètres et par une loi normale lorsque et
On utilisera le fait suivant : si suit la loi normale centrée réduite et ,
Réponse :
Soit le nombre de sandwichs demandés par les supporters. suit une loi binomiale de paramètres et
Ainsi, il suffit de trouver tel que
Il suffit que le stade achète environ sandwichs.
COURS DE MATHS
Nous avons recruté pour vous les meilleurs professeurs particuliers de maths
S'EXERCER ET APPRENDRE
Avis Google France ★★★★★ 4,8 sur 5
De multiples autres chapitres de maths en ECG1 peuvent être revus et travaillés depuis chez vous avec nos différents cours en ligne au programme d’ECG1 :