Chapitres Maths en ECG1
Chapitres Maths en ECG1
Corrigés d’exercices : Probabilités sur un univers fini en ECG1
Résumé de cours Exercices Corrigés
Cours en ligne de Maths en ECG1
Corrigés – Probabilités sur un univers fini
Exercice 1 :
1) Par définition, il y a
tirages possibles.
2) a) Comme on veut que toutes les boules aient un numéro inférieur à
cela revient à tirer
boules dans l’ensemble
il y a
tirages possibles.
b) Pour obtenir un tirage de
boules dont le plus grand numéro est égal à
on choisit
boules parmi les boules numérotées de
à
de
façons et on ajoute la boule
à ces
boules.
Lorsque
le nombre de tirages de
boules dont le plus grand élément est égal à
est égal à ![]()
c) Soit
l’ensemble des tirages de
boules parmi
boules numérotées de
à
. On rappelle que
est l’ensemble des tirages dont le plus grand numéro vaut
.
L’inclusion
étant évidente, montrons l’inclusion réciproque. Si l’on tire ![Rendered by QuickLaTeX.com \[\mathrm{card} \left( A \right) = \displaystyle\sum_{k=p}^n \mathrm{card} \left( A_k \right).\]](https://groupe-reussite.fr/ressources/wp-content/ql-cache/quicklatex.com-40100e1f809e49cf128ab7ddd3a51012_l3.png)
Comme
(nombres de façons de tirer
boules parmi
) et
(question précédente), on a bien l’égalité souhaitée.
b) Se donner un tirage avec remise de
boules tel que le premier numéro soit strictement inférieur au dernier revient
COURS DE MATHS
Les meilleurs professeurs particuliers
Pour progresser et réussir
Avis Google France ★★★★★ 4,9 sur 5
Exercice 2 :
1) a) Il ne pas y avoir de surjection car l’ensemble d’arrivée contient plus d’éléments que l’ensemble de départ. Ainsi
si ![]()
b) Lorsque
on sait que si
est surjective, alors
est injective donc
est bijective.
Or, il y a
bijections d’un ensemble à
éléments dans un ensemble à
éléments. Ainsi ![]()
Si
il n’y a qu’une seule application : l’application qui à chaque élément de l’ensemble de départ associe l’unique élément de l’ensemble d’arrivée. Cette application étant surjective, il y a
application et ![]()
c) Rappelons qu’il y a
applications d’un ensemble à
éléments vers un ensemble à
éléments, disons
. Parmi toutes ces applications, seules deux ne sont pas surjectives : celle qui à tout élément de l’ensemble de départ associe l’élément
et celle qui à tout élément de l’ensemble de départ associe l’élément ![]()
d) Définir une surjection d’un ensemble
à
éléments vers un ensemble
à
éléments revient :
2) a) La formule
![]()
est facile à vérifier en revenant à la définition des coefficients binomiaux.



b) Il est clair que 

![]()
Il nous reste à calculer ![]()
![Rendered by QuickLaTeX.com \[k^p = \displaystyle\sum_{i=1}^k \displaystyle\binom{k}{i} S_i^p,\]](https://groupe-reussite.fr/ressources/wp-content/ql-cache/quicklatex.com-d5870637a44760a593d7fa63050b3451_l3.png)
puis
![Rendered by QuickLaTeX.com \[\left( - 1 \right)^k \displaystyle\binom{n}{k} k^p = \displaystyle\sum_{i=1}^k \left(- 1 \right)^k \displaystyle\binom{n}{k} \displaystyle\binom{k}{i} S_i^p.\]](https://groupe-reussite.fr/ressources/wp-content/ql-cache/quicklatex.com-0daf6aea46dc631ae62f9adab77c4a00_l3.png)
On somme cette relation entre
et
puis on intervertit les deux sommes :



.
pour
![Rendered by QuickLaTeX.com \[S_n^p = \left( - 1 \right)^n \sum_{k=0}^n \left( - 1 \right)^k \displaystyle\binom{n}{k} k^p.\]](https://groupe-reussite.fr/ressources/wp-content/ql-cache/quicklatex.com-8f5bfd6bce127234bf2df81abae7c3e3_l3.png)
COURS PARTICULIERS EN LIGNE
Nous avons sélectionné pour vous les meilleurs professeurs particuliers.
POUR ACCÉLÉRER MA PROGRESSION
Avis Google France ★★★★★ 4,9 sur 5
Lors de la correction de vos exercices, pensez à prendre note de vos erreurs et relisez régulièrement les règles ou méthodes qui vous posent problème. Faites de même pour les autres chapitres au programme d’ECG1 en Maths :
