Chapitres Maths en ECG1
Chapitres Maths en ECG1
Corrigés d’exercices : Probabilités sur un univers fini en ECG1
Résumé de cours Exercices Corrigés
Cours en ligne de Maths en ECG1
Corrigés – Probabilités sur un univers fini
Exercice 1 :
1) Par définition, il y a tirages possibles.
2) a) Comme on veut que toutes les boules aient un numéro inférieur à cela revient à tirer boules dans l’ensemble il y a tirages possibles.
b) Pour obtenir un tirage de boules dont le plus grand numéro est égal à on choisit boules parmi les boules numérotées de à de façons et on ajoute la boule à ces boules.
Lorsque le nombre de tirages de boules dont le plus grand élément est égal à est égal à
c) Soit l’ensemble des tirages de boules parmi boules numérotées de à . On rappelle que est l’ensemble des tirages dont le plus grand numéro vaut .
Comme (nombres de façons de tirer boules parmi ) et (question précédente), on a bien l’égalité souhaitée.
b) Se donner un tirage avec remise de boules tel que le premier numéro soit strictement inférieur au dernier revient
COURS DE MATHS
Les meilleurs professeurs particuliers
Pour progresser et réussir
Avis Google France ★★★★★ 4,9 sur 5
Exercice 2 :
1) a) Il ne pas y avoir de surjection car l’ensemble d’arrivée contient plus d’éléments que l’ensemble de départ. Ainsi si
b) Lorsque on sait que si est surjective, alors est injective donc est bijective.
Or, il y a bijections d’un ensemble à éléments dans un ensemble à éléments. Ainsi
Si il n’y a qu’une seule application : l’application qui à chaque élément de l’ensemble de départ associe l’unique élément de l’ensemble d’arrivée. Cette application étant surjective, il y a application et
c) Rappelons qu’il y a applications d’un ensemble à éléments vers un ensemble à éléments, disons . Parmi toutes ces applications, seules deux ne sont pas surjectives : celle qui à tout élément de l’ensemble de départ associe l’élément et celle qui à tout élément de l’ensemble de départ associe l’élément
d) Définir une surjection d’un ensemble à éléments vers un ensemble à éléments revient :
2) a) La formule
est facile à vérifier en revenant à la définition des coefficients binomiaux.
,
b) Il est clair que
Il nous reste à calculer
puis
On somme cette relation entre et puis on intervertit les deux sommes :
.
.
COURS PARTICULIERS EN LIGNE
Nous avons sélectionné pour vous les meilleurs professeurs particuliers.
POUR ACCÉLÉRER MA PROGRESSION
Avis Google France ★★★★★ 4,9 sur 5
Lors de la correction de vos exercices, pensez à prendre note de vos erreurs et relisez régulièrement les règles ou méthodes qui vous posent problème. Faites de même pour les autres chapitres au programme d’ECG1 en Maths :