Chapitres Maths en ECG1
Chapitres Maths en ECG1
Cours : Variables aléatoires à densité en ECG 1
Résumé de cours Exercices Corrigés
Cours en ligne de Maths en ECG1
Ce résumé de cours et de méthodes proposé gratuitement vous fournit toutes les notions à maitriser et des exemples précis sur les variables aléatoires à densité en prépa ECG. Pour aller plus loin, n’hésitez pas à faire appel à un professeur particulier de maths à domicile ou en ligne pour attaquer la deuxième année de prépa ECG sereinement.
1. Généralités sur les variables aléatoires à densité en ECG
Dans ce paragraphe, est un espace probabilisé.
\noindent Une application de dans est une variable aléatoire réelle lorsque pour tout
On suppose dans ce paragraphe que n’est ni fini, ni en bijection avec
On définit la fonction de répartition par si
La fonction de répartition de vérifie les propriétés suivantes :
est croissante sur
et
est continue à droite en tout point et admet une limite à gauche en égale à
Si
caractérise la loi, c’est-à-dire que deux variables aléatoires et suivent la même loi si et seulement si
Lorsque est continue, pour tout donc si et et
Soient et deux variables aléatoires définies sur telles que ni ni ne soit fini ou en bijection avec On dit que et sont indépendantes si pour tout
Cette définition se généralise à ( ) variables aléatoires.
Méthode 1 : Montrer qu’une fonction est une densité.
Pour montrer qu’une fonction définie sur est une densité sur il faut vérifier les deux hypothèses suivantes :
est continue sur sauf éventuellement en un nombre fini de points, et à valeurs positives,
l’intégrale converge et est égale à
On se souviendra aussi que la densité caractérise la loi, c’est-à-dire que si deux variables aléatoires ayant respectivement et pour densité, si et sont égales sauf en un nombre fini de points, alors et suivent une même loi.
Exemple : Montrer que les fonctions suivantes sont des densités :
1) la fonction définie sur par
2) Soit définie par
Réponse :
1) Vérifions les deux conditions pour avoir une densité.
est une densité.
est une densité.
PROF DE MATHS PARTICULIER
Des cours de qualité et enseignants aguerris
Préparer des concours ou s'exercer
Avis Google France ★★★★★ 4,9 sur 5
Méthode 2 : Reconnaître une variable aléatoire à densité et en donner la loi.
Par définition, une variable à densité est une variable aléatoire telle qu’il existe une densité telle que pour tout
Lorsque l’on connaît la fonction de répartition de la variable pour montrer que admet une densité, on montre que est continue sur de classe sauf éventuellement en un nombre fini de points.
Si est de classe en
Réciproquement si est une variable aléatoire à densité, sa fonction de répartition est définie par
La fonction est continue sur de classe en tout point où est continue, et en ces points
Pour donner la loi d’une variable aléatoire à densité, il suffit au choix de donner
la fonction de répartition de
une densité de
Important : on retiendra que si est une variable aléatoire à densité, pour tout
Piège : Si est une densité de toute fonction à valeurs positives égale à sauf en un nombre fini de points est aussi une densité de On ne parle pas de la densité mais d’une densité.
Si est de classe on choisira et on pourra commettre l’abus de langage de parler de la densité de en choisissant cette densité.
Méthode 3 : Calculer la fonction de répartition d’une variable aléatoire .
Il y a deux méthodes selon les données de l’énoncé :
si l’on connaît une densité de on calcule la fonction de répartition de en utilisant
Lorsque l’expression de est définie par raccord sur les intervalles d’extrémités on calcule en étudiant les différents cas :
sinon, on revient à la définition : Il est souvent possible de prouver alors que admet une densité. Ce sera la méthode à adopter lorsque l’on définira la fonction étant continue sur On déterminera la fonction de répartition de en fonction de celle de puis on cherchera à prouver que admet une densité.
Exemple :
Soit une variable aléatoire de fonction de répartition définie par
On note
Trouver la fonction de répartition de et montrer que admet une densité que l’on exprimera.
Réponse : La fonction est continue sur (on vérifie qu’elle est continue aux points de raccord et ),
Méthode 4 : Montrer qu’une variable aléatoire à densité admet une espérance.
1) Soit une variable admettant une densité . Pour montrer que admet une espérance, il faut montrer que l’intégrale converge absolument.
Si c’est le cas, on pose
2) Si et sont deux variables aléatoires indépendantes et à densité ayant chacune une espérance, alors la variable aléatoire admet une espérance et
Remarque : 1) Lorsque admet une densité continue sur et nulle hors de alors admet une espérance égale à puisque les intégrales et sont absolument convergentes et nulles.
2) Si est une variable à densité admettant une espérance et si admet une espérance et
COURS PARTICULIERS EN LIGNE
Nous avons sélectionné pour vous les meilleurs professeurs particuliers.
POUR ACCÉLÉRER MA PROGRESSION
Avis Google France ★★★★★ 4,9 sur 5
Méthode 5 : Montrer qu’une variable aléatoire à densité admet une variance.
Soit une variable aléatoire admettant une densité
Lorsque l’intégrale converge (elle converge aussi absolument), alors admet une espérance et une variance.
On définit et la variance de par :
On montre que et on appelle écart type de
Remarque : 1) Si admet une densité continue sur un segment et nulle hors de alors admet une variance car l’intégrale est convergente, la fonction étant nulle hors de et dans ce cas et
2) Si est une variable à densité admettant une variance et si admet une variance et
2. Lois de variables à densité usuelles en prepa ECG
Méthode 6 : Sur la loi normale.
La loi normale est une loi assez importante pour faire quelques rappels.
Soient un réel et un réel strictement positif.
1) On dit qu’une variable à densité suit une loi normale de paramètres et si elle admet une densité de la forme
Dans ce cas, on a et
2) Les calculs étant plus simples pour la loi normale centrée réduite (avec et ), il est bon de savoir que
si suit la loi normale de paramètres et alors suit la loi normale centrée, réduite.
si suit la loi normale centrée, réduite, et si suit une loi normale de paramètres et
3) Si est la fonction de répartition de de loi normale de paramètres et la fonction ne s’exprime pas à l’aide des fonctions usuelles, mais on peut en calculer les valeurs approchées en utilisant des tables de loi normale ou Scilab et en utilisant les propriétés suivantes :
pour tout
Si vous hésitez, tracez le graphe de la densité et interprétez les probabilités en termes d’aires de domaine compris entre le graphe de et l’axe
Méthode 7 : Variable aléatoire et loi exponentielle.
La fonction de répartition, une densité de la loi exponentielle sont données par le tableau ci-dessus. Il en est de même de l’espérance et de la variance. Nous citons quelques propriétés qui sont importantes à retenir :
Soit est une variable aléatoire admettant une densité. est une variable aléatoire sans mémoire c’est-à-dire vérifiant
si et seulement si suit une loi exponentielle.
Si suit une loi exponentielle de paramètre si et seulement si suit une loi exponentielle de paramètre
Profitez des autres cours en ligne, exercices, et corrigés d’exercices en ECG1 en maths pour améliorer vos résultats de maths :