Chapitres Maths en MPSI, PCSI, MP2I, PTSI
Chapitres Maths en MPSI, PCSI, MP2I, PTSI
Corrigés: Raisonnement et récurrence
Résumé de cours Exercices Corrigés
Cours en ligne de Maths en Maths Sup
Corrigés- raisonnements et récurrence MPSI, PCSI
1. 1. Manipulation des assertions et quantificateurs
Exercice 1
Soit une fonction de dans .
Traduire en termes de quantificateurs les phrases suivantes :
1/ est majorée.
Corrigé :
est majorée ssi
.
2/ n’est pas minorée
Corrigé :
donc on obtient par négation :
.
3/ est bornée.
Corrigé :
.
.
Corrigé :
paire se traduit par .
impaire se traduit par .
n’est ni paire ni impaire se traduit par
.
👍 cette affirmation est équivalente et plus concise que
il existe tel que
ou
il existe tel que .
5/ ne s’annule jamais
Corrigé :
6/ est périodique
Corrigé :
7/ est croissante
Corrigé :
est croissante se traduit par
, ().
8/ est strictement décroissante
Corrigé :
est strictement décroissante se traduit par
, ().
9/ n’est pas monotone
Corrigé :
n’est pas monotone se traduit par
,
ce qui traduit le fait que et ne sont pas de même signe.
On peut aussi écrire
, .
10/ n’ est pas la fonction nulle
Corrigé :
11/ ne prend pas deux fois la même valeur
Corrigé :
ne prend pas deux fois la même valeur
se traduit par :
si ).
👍 On dit que est injective.
12/ atteint toutes les valeurs de .
Corrigé :
prend toutes les valeurs de se traduit par
.
COURS DE MATHS
Les meilleurs professeurs particuliers
Pour progresser et réussir
Avis Google France ★★★★★ 4,9 sur 5
Exercice 2
Si est une partie non vide de , traduire en français les propriétés suivantes :
Question 1
.
Corrigé :
ne contient pas deux éléments consécutifs.
Question 2
est une partie non vide de vérifiant .
Corrigé :
Si , le suivant est dans (ainsi que tous les entiers supérieurs à ).
Alors si est le plus petit élément de , .
(on admet que toute partie non vide de possède un plus petit élément).
Exercice 3
Que dire de vérifiant
a)
b) ?
Corrigé :
On ne peut rien déduire de l’affirmation puisque toute fonction vérifie cette condition avec .
Si vérifie b), est constante.
Exercice 4
Quelles sont les fonctions vérifiant
a)
b)
Corrigé :
Les fonctions vérifiant la condtion a) sont les fonctions affines.
Toute fonction vérifie la condition b)
il suffit de prendre et .
Exercice 5
Soit et
Traduire avec des quantificateurs
a) sont réels non nuls.
b) sont réels non tous nuls
c) est une famille de réels contenant au moins un 0
d) est une famille de réels contenant un seul 0.
Corrigé :
a) .
b)
et .
c)
et
ou
et .
d)
et .
ou
,
et .
Exercice 6
Traduire avec des quantificateurs :
Question 1
Certains réels sont strictement supérieurs à leur carré
Corrigé :
.
(c’est le cas pour les réels vérifiant soit les réels de ).
Question 2
Étant donnés trois réels non nuls, il y en a au moins deux de même signe
Corrigé :
Il est plus simple de définir les trois réels par la même lettre indexée.
Soient ,
.
Exercice 7
Soient et deux propriétés définies sur un ensemble .
Les assertions
a) et )
b) () et ()
sont-elles équivalentes ?
Corrigé :
Prendre , « être pair » et « être impair « .
L’affirmation
() et ()
est vraie.
Par contre l’affirmation
et )
est fausse car aucun entier n’est à la fois pair et impair.
Les propriétés a) et b) ne sont pas équivalentes. Mais la première propriété implique la deuxième.
COURS PARTICULIERS EN LIGNE
Nous avons sélectionné pour vous les meilleurs professeurs particuliers.
POUR ACCÉLÉRER MA PROGRESSION
Avis Google France ★★★★★ 4,9 sur 5
2. Raisonnement par récurrence en maths sup
Exercice 1
Montrer que si , 3 divise .
Corrigé :
On établit le résultat par récurrence sur . On note :
si , divise .
est vraie car est divisible par 3.
On suppose que est vraie
En utilisant , il existe tel que , on a donc prouvé que
est divisible par 3.
est vraie.
La propriété est établie par récurrence.
Exercice 2
et si , .
Conjecturer la valeur de et le démontrer
Corrigé :
, , et
Ce qui doit suffire pour conjecturer !
Si , on note : .
est vraie.
On suppose que est vraie
ce qui prouve .
La propriété est démontrée par récurrence sur .
Exercice 3
Soit .
Si est croissante de dans il existe tel que .
Corrigé :
Si , on note : Si est croissante de dans , il existe tel que .
Pour , est une fonction croissante de dans lui même, donc et est prouvée.
On suppose que est vraie.
Soit croissante de dans .
Si , le résultat est établi avec .
Si , .
La restriction de à est une fonction croissante de dans lui-même, donc d’après , il existe tel que , donc avec .
Par disjonction des cas, on a établi .
La propriété est démontrée par récurrence.
Exercice 4
Si est un réel non nul tel que , alors .
Corrigé :
On suppose que est un réel non nul tel que et si , on note et .
est vérifiée car : et .
On suppose que est vraie.
On note .
soit
comme sont dans , .
est vraie.
La propriété est démontrée par récurrence.
Exercice 5
Tout entier peut s’écrire comme somme de puissances de 2 toutes distinctes.
Corrigé :
On va procéder par récurrence forte sur .
Si , on note : pour tout entier tel que , est somme de puissances de 2 toutes distinctes.
est vraie car .
Soit tel que soit vraie.
Si est pair, alors avec car , s’écrit comme somme de puissances de 2 toutes distinctes,
avec
donc est la somme de puissances de 2 toutes distinctes.
Si est impair, alors avec , s’écrit comme somme de puissances de 2
avec ,
et est la somme de puissances de 2, 2 à 2 distinctes.
On a prouvé que est vraie.
La propriété est démontrée par récurrence.
Exercice 6
Trouver l’erreur dans le raisonnement par récurrence suivant.
Soit si , » dans toute partie de entiers, tous les éléments ont même parité. »
est vraie de façon évidente.
Soit tel que soit vraie.
Soit une partie de entiers que l’on range par ordre strictement croissant.
On note (resp ) la partie de formée des plus petits (resp. plus grands) éléments de .
D’après l’hypothèse , les éléments de ont même parité ainsi que les éléments de .
Or l’entier numéro est à la fois dans et , donc les éléments de et de ont la parité de , donc tous les éléments de ont même parité.
Par récurrence, toute partie finie non vide de est formée d’éléments de même parité.
Corrigé :
La propriété est fausse car si , les ensembles et n’ont pas d’élément commun, ce n’est que pour , que l’on peut dire que le -ième élément est à la fois dans et .
Exercice 7
Soit pour , : 5 divise
Question 1
La propriété est héréditaire.
Corrigé :
On suppose que est vraie.
comme où ,
est divisible par 5.
La propriété est héréditaire.
Question 2
est vraie pour tout .
Corrigé :
Pour , 5 ne divise pas .
On peut démontrer que ne divise jamais .
On démontre que le chiffre des unités de est lorsque .
Si , on note : il existe tel que .
est vraie car
On suppose que est vraie, on écrit qu’il existe tel que
.
Par récurrence, le chiffre des unités de est toujours un 7 ; donc n’est pas divisible par pour tout .
⚠️ Il est important de ne pas oublier de vérifier correctement l’initialisation de la récurrence !
Exercice 8
Soit
et .
On note si ,
: .
Question 1
est héréditaire.
Corrigé :
On suppose que est vraie avec , alors et sont des rationnels, donc est rationnel par somme de rationnels.
Question 2
Si , on a prouvé par récurrence forte que est rationnel pour tout
Corrigé :
En choisissant , il est alors évident que n’est pas rationnel.
Comme est fausse, la propriété n’est pas vraie par récurrence.
Conclusion
⚠️ Il est conseillé pour ne pas se faire piéger par une telle erreur, de démontrer la propriété par récurrence double et non par récurrence forte (ce qui risque l’oubli de la vérification de la propriété pour ).
3. Sur la suite de Fibonacci en maths sup
On considère la suite (suite de Fibonacci) définie par et, pour tout .
Question 1
La suite vérifie :
.
Corrigé :
Si et , on note .
.
et , donc est vraie.
On suppose que est vraie où est fixé et vérifie .
puis , donc .
On a établi .
La propriété est démontrée par récurrence sur .
Question 2
La suite vérifie :
.
Corrigé :
Pour tout on note
: .
et on note .
Dans cette question, il est inutile d’utiliser une hypothèse de récurrence double.
donc est vraie.
On suppose que est vraie
en utilisant .
est vraie, donc la propriété est démontrée par récurrence.
Question 3
La suite vérifie pour tout ,
.
Corrigé :
On fixe et on utilise une récurrence double sur l’entier .
Soit si , : et .
Pour , ()
donc est vraie.
On suppose que est vraie.
Par somme des relations :
et ,
on obtient
ce qui donne
.
On a prouvé .
La propriété est démontrée par récurrence.
Question 4
On note et .
.
Corrigé :
On note et
soit :
et .
Pour
.
On a prouvé que est vraie.
On suppose que est vraie.
En utilisant la somme des deux relations
Puis
donc .
.
On a prouvé que
.
On a donc établi .
La propriété est établie par récurrence.
4. Autres types de raisonnements
Exercice 1
Démontrer que si est la somme de deux carrés d’entiers, alors le reste de la division euclidienne de par 4 est toujours différent de 3.
Corrigé :
On écrit où , on raisonne par disjonction des cas.
et sont pairs, soit et où .
.
Le reste de la division de par 4 est nul.
L’un est pair et l’autre impair.
Par symétrie, on peut supposer que est pair et est impair et écrire , où .
.
Le reste de la division de par 4 est égal à 1.
et sont impairs, soit et où .
Le reste de la division de par 4 est égal à 2.
Par disjonction des cas, le reste de la division de par 4 n’est pas égal à 3.
Exercice 2
Pour tout , est divisible par 6
Corrigé :
On remarque que et sont deux entiers consécutifs, l’un est pair et l’autre impair, donc est pair, alors est divisible par 2.
On démontre que est divisible par 3
si où , est un multiple de , donc est divisible par 3.
où ,
est divisible par 3, donc l’est aussi .
où ,
est divisible par 3, donc l’est aussi .
Par disjonction des cas, est divisible par 3.
est divisible par 2 et 3, donc divisible par 6.
👍 Aviez vous pensé à démontrer la divisibilité par 2 puis par 3 (ce qui est plus rapide que de démontrer que la propriété est vraie par disjonction de 6 cas) ?
Exercice 3
Si et sont réels,
.
Corrigé :
On raisonne par disjonction des cas :
Si ,
soit .
soit .
Si ,
soit .
soit .
On a établi les relations par disjonction des cas.
Exercice 4
Déterminer l’ensemble des fonctions de dans telles que , .
Corrigé :
Analyse
Si est solution, en prenant
donc ou .
Si , donc
Si , donc .
Il y a au plus deux solutions : les fonctions constantes égales à 0 et à 1.
Synthèse
Si ,
, .
Si ,
, .
Le problème admet exactement deux solutions.
Exercice 5
Déterminer les fonctions telles que pour tout réel ,
Corrigé :
On suppose que est solution, en remplaçant par , pour tout réel ,
relation que l’on multiplie par
puis en utilisant la définition de :
on obtient
en réordonnant
sachant que pour tout réel , , on obtient .
Synthèse Soit .
Pour tout réel ,
donc est solution.
Le problème admet une unique solution, la fonction constante égale à 1.
Exercice 6
Déterminer toutes les fonctions telles que,
.
Corrigé :
On va raisonner par analyse-synthèse en déterminant des conditions nécessaires sur qui vérifie cette équation, puis en vérifiant que ces conditions sont suffisantes.
Analyse : soit une fonction vérifiant cette condition.
En choisissant , on obtient , ce qui entraîne ou .
En choisissant ensuite et , on a , ce qui interdit . On a donc (et aussi ).
Enfin, fixant , on obtient que pour tout , on a .
On a donc prouvé que si est solution de l’équation, alors, pour tout réel , .
Synthèse : Soit .
Alors, , on a
et
ce qui prouve bien que est solution de l’équation.
En conclusion, l’équation admet une solution unique : la fonction donnée par .
Travaillez tous les chapitres de maths de MPSI, PCSI et PTSI grâce à nos divers cours en ligne dont :