Chapitres Maths en MPSI, PCSI, MP2I, PTSI
Chapitres Maths en MPSI, PCSI, MP2I, PTSI
Exercices corrigés d’arithmétique en Maths Sup
Résumé de cours Exercices et corrigés
Cours en ligne de Maths en Maths Sup
Plan des exercices :
1. Divisibiité
2. Sur les nombres premiers
3. PGCD
4. Produit des diviseurs
5. Somme des diviseurs
6. Nombres de Mersenne
7. Nombres de Fermat
8. Triangles Pythagoriciens
9. Théorème de Wilson
10. Théorème chinois
COURS DE MATHS
Les meilleurs professeurs particuliers
Pour progresser et réussir
Avis Google France ★★★★★ 4,9 sur 5
1. Divisibilité
Exercice 1 : arithmétique maths sup
,
divise
. Vrai ou Faux ?
Correction :
Deux démonstrations sont proposées.
On raisonne avec la relation de congruence modulo 7.
![]()
![]()
donc ![]()
soit ![]()
et 7 divise
.
Démonstration par récurrence.
Si
, on note
divise
.
Pour
,
est divisible par 7.
On suppose que
est vraie, il existe donc
tel que
.
![]()
![]()
est divisible par 7.
Donc
est vraie.
La propriété est démontrée par récurrence.
Exercice 2
,
divise
. Vrai ou Faux ?
Correction :
On utilise les relations de congruence modulo 7 et 5.
![]()
donc ![]()
soit ![]()
ce qui donne
divise
.
![]()
donc ![]()
puis ![]()
donc ![]()
soit ![]()
et alors ![]()
On obtient : ![]()
ce qui donne
divise
.
Comme
,
divise
.
Autre méthode.
On suppose que
car
.
On rappelle que si
,
.
avec
et ![]()
où 
.
On peut remarquer que cette méthode prouve même que
est divisible par
.
Exercice 3
Si
,
divise
Vrai ou Faux ?
Correction : Par le binôme de Newton,


Si
,
divise
, donc
.
alors
et
divise
.
Exercice 4
Soient
et
deux éléments de ![]()
Il y a équivalence entre
1)
divise
et ![]()
2)
est un multiple de
. Vrai ou Faux ?
Correction :
Si
divise
et
,
divise
et
, donc divise
.
On démontre la contraposée.
On suppose que
ne divise pas
ou
.
On peut se ramener au cas où
ne divise pas
.
On utilise la relation de congruence modulo 7.
![]()
ou
![]()
ou
![]()
ou
![]()
est congru modulo 7 à
,
ou
.
est congru modulo 7 à
,
,
ou
.
Donc
est congru modulo 7 à la somme des congruences soit à
, avec
, il n’est jamais congru à 0 donc
ne divise pas
.
2. Sur les nombres premiers
Exercice 1
est un irrationnel. Vrai ou Faux ?
Correction : On suppose qu’il existe
tels que
![]()
alors
donc
donnerait
divise
ce qui est absurde.
est un irrationnel.
Exercice 2
Soit
un nombre premier impair tel que
divise
où
.
.
Vrai ou Faux ?
Correction :
divise
donc
.
est impair, on l’écrit
avec
car
.
divise
ne divise pas
(car si
,
, donc
divise 1, ce qui est impossible).
Par le petit théorème de Fermat : ![]()
or
![]()
donc
.
et
divise
donc
alors
.
On a écrit
donc
.
Exercice 3
Il existe une infinité de nombres premiers de la forme
. Vrai ou Faux ?
Correction : On raisonne par l’absurde en supposant qu’il n’y en a qu’un nombre fini d’entiers de la forme
pour
car
et
sont premiers et de la forme
.
On note
et
est de la forme
où
.
Si
est un nombre premier divisant
, il est impair. Il divise
alors
est de la forme
d’après l’exercice 2 qui précède.
S’il existait
tel que
, alors
divise
et
donc
divise 1, ce qui est impossible.
On a prouvé un nombre premier
de la forme
différent des
pour
.
Il y a donc une infinité de nombres premiers de la forme
.
3. PGCD
Exercice 1
Soit
.
a) Le pgcd de
et ![]()
b) Le pgcd de
et ![]()
Exercice 2
Résoudre l’équation
dans
.
Exercice 3
Résoudre :
.
Exercice 4
Déterminer les entiers naturels
et
ayant respectivement 21 et 10 divi- seurs dans
tels que ![]()
Exercice 5
Résoudre dans
![]()
Exercice 6
Résoudre dans
![]()
4. Produits des diviseurs
Soit
un entier de décomposition primaire
.
Question 1
Quel est le nombre
de diviseurs dans
de
?
Correction :
divise
ssi sa décomposition primaire
vérifie
.
Avec les notations de l’énoncé,
divise
ssi
avec
pour
.
Le nombre de diviseurs dans
de
est égal au nombre d’éléments de l’ensemble
,
.
Question 2
Calculer
.
Correction :
On note
.
est une bijection, donc
et par produit
où
est le nombre de diviseurs de
que l’on a calculé dans la première question :
.
Alors
.
Question 3
Déterminer l’ensemble des entiers
tels que
.
Correction : On note
le nombre de diviseurs dans
de
.
ssi
ssi
ssi
ssi
.
Si
,
car
donc
.
Si
, on obtient la CNS :
.
Ce qui donne la CNS :
.
Si
, on obtient la CNS : ![]()
ssi
ssi
,
tel que
.
En résumé, l’ensemble des solutions est l’ensemble des entiers tels que
ou
,
tel que
.
Question 4
Déterminer
tel que ![]()
Correction : On cherche la décomposition primaire de
.
Les seuls diviseurs premiers de
sont
et
.
On écrit
et
Par le calcul précédent,
![]()
ce qui donne
et
donc par quotient
.
On résout
ssi
![]()
alors
ou
.
n’est pas solution.
est solution.
Puis
, donc
.
On peut vérifier puisque le raisonnement n’a pas été fait par équivalence que
.
COURS PARTICULIERS EN LIGNE
Nous avons sélectionné pour vous les meilleurs professeurs particuliers.
POUR ACCÉLÉRER MA PROGRESSION
Avis Google France ★★★★★ 4,9 sur 5
5. Somme des diviseurs
Si
, on note ![]()
et
.
Question 1
Calculer
lorsque
et
.
Correction :
.
.
Question 2
Si
et
, montrer que ![]()
Correction :
On définit
.
Il est évident que si
divise
et
divise
,
divise
, donc
est à valeurs dans
.
On démontre que
est surjective.
Soit
.
Si
soit
.
Comme ![]()
Donc si
est un diviseur premier de
,
est un diviseur de
ou un diviseur de
mais n’est pas un diviseur des deux.
En regroupant dans
les facteurs tels que
et dans
ceux tels que
, on peut écrire
avec
et
.
On a écrit
On démontre que
est injective.
Si
avec
et
,
divise
et
car
, donc
divise
.
En échangeant
et
,
divise
. Comme ils sont dans
,
, donc
.
On a donc prouvé que l’application
est une bijection.
Alors
soit
.
Question 3
Calculer
lorsque la décomposi- tion primaire de
est
.
Correction :
Si
, on note
: si les entiers
(où
) sont deux à deux premiers entre eux,
.
est évidente.
On suppose que
est vraie.
Si les entiers
(où
) sont deux à deux premiers entre eux, les entiers
et
sont premiers entre eux (un diviseur premier de
ne peut être un diviseur de
), donc par la question 2,
![]()
ce qui donne
en utilisant
pour exprimer
.
La propriété est démontré par récurrence.
En utilisant le résultat précédent avec si
,
qui sont
entiers 2 à 2 premiers entre eux,

puis on termine avec la question 1
.
Question 4
Un entier
est dit parfait lorsque
(soit lorsque la somme des diviseurs stricts de
est égal à
).
On suppose que
est premier. Montrer que
est un nombre parfait.
Donner 3 exemples de nombres parfaits
Correction :
admet deux facteurs premiers
et
(
car
) donc
.
Donc
est un entier parfait.
Si
,
est premier donc
est un nombre parfait
Si
,
est premier donc 24 est un nombre parfait
Si
,
n’est pas premier
Si
,
est premier donc
est parfait.
6, 24 et 496 sont des entiers parfaits.
6. Nombres de Mersenne
Le
-ième nombre de Mersenne où
est défini par
.
Question 1
Si
et
est premier,
est impair. Vrai ou Faux.
Correction : En effet si
avec
et
, en notant
,
et
, on a prouvé que
n’est pas premier.
Par contraposée, si
et
est premier,
est impair.
Question 2
Si
est premier,
est premier. Vrai ou Faux ?
Correction :
On suppose que
avec
et
.
avec
est un diviseur de
différent de
et de
.
Donc
n’est pas premier.
De même
divise
.
,
et
sont premiers
n’est pas premier alors que
l’est.
Question 3
Si
,
.
7. Nombres de Fermat
Question 1
Si
est impair au moins égal à 3,
n’est pas premier. Vrai ou Faux ?
Correction :
Première méthode
Si
, on note ![]()
Pour
, ![]()
On suppose que
est vraie.
![]()
![]()
donc
est vraie.
La propriété est vraie par récurrence.
Pour tout
donc
est divisible par 3 et au moins égal à 9, donc n’est pas premier.
Deuxième méthode
On peut aussi écrire
Si
est impair et différent de
,
,
![]()

où
et
, 3 est un diviseur strict,
donc
n’est pas premier.
Troisième méthode
est premier et
,
par le théorème de Fermat,
donc
soit ![]()
divise
et
.
Donc
n’est pas premier.
Question 2
Si
avec
,
n’est pas premier. Vrai ou Faux ?
Correction : On note
et ![]()
![]()
donc
avec
et
.
Donc
est un diviseur strict de
, qui n’est pas premier.
Si
désigne le
-ième entier de Fermat.
On peut remarquer que
,
,
,
et
sont premiers
n’est pas premier.
Question 3
Si
,
. Vrai ou Faux ?
Correction : Si
, on note
.
est vraie car
.
On suppose que
est vraie.
![]()
par la factorisation de
,
![]()
En utilisant l’hypothèse de récurrence :
.
ce qui donne
.
La propriété est démontrée par récurrence.
Question 4
Si
,
.
8. Triangles pythagoriciens
On veut résoudre dans
l’équation ![]()
(de tels triplets d’entiers relatifs sont appelés triplets pythagoriciens).
On cherche dans la suite les triplets différents de la solution triviale comme par exemple
.
Dans les questions
à
, on suppose que
est une solution non triviale de l’équation.
Question 1
Montrer que l’on peut se ramener au cas où
. Montrer que, dans ce cas,
,
et
sont de plus deux à deux premiers entre eux.
Correction :
Soient
solutions de
.
On note
.
sinon
, cas exclu dans cette étude.
Alors
,
et
avec
et
.
On suppose
solution et
.
si
, en introduisant
tel que
divise
,
divise
et
donc
divise
, donc
divise
ce qui contredit
.
si
, en introduisant
tel que
divise
,
divise
et
donc
divise
, donc
divise
ce qui contredit
.
si
, en introduisant
tel que
divise
,
divise
et
donc
divise
, donc
divise
ce qui contredit
.
On a prouvé que si
est solution,
sont premiers 2 à 2.
Question 2
On suppose que
et
sont deux à deux premiers entre eux. Montrer que deux des trois nombres
,
et
sont impairs, le troisième étant pair puis que
est impair.
Correction :
Il est impossible d’avoir au moins deux entiers pairs car alors ces deux entiers ne seraient pas premiers entre eux.
Il y a au moins deux entiers impairs. La somme ou la différence de deux carrés d’impairs est une somme ou différence de deux nombres impairs donc est paire et alors le carré du troisième est pair, le troisième est pair.
si
et
sont impairs, on les écrit
,
et on écrit
.
Donc
donne
ce qui est impossible.
On en déduit que l’un des deux entiers
est pair, les autres entiers étant impairs. En particulier
est impair.
Par symétrie, on peut supposer que
est pair,
et
sont impairs.
On peut donc écrire
et comme
et
sont pairs, on introduit
tels que
et
.
Question 3
et
et
sont des carrés parfaits.
Question 4
En déduire que l’ensemble des triplets pythagoriciens non triviaux est l’ensemble des triplets de la forme
![]()
où
et
, à une permutation près des deux premières composantes.
COURS DE MATHS
Les meilleurs professeurs particuliers
Pour progresser et réussir
Avis Google France ★★★★★ 4,9 sur 5
9. Théorème de Wilson
Le but est de démontrer que si
,
divise
ssi
est premier.
Question 1
Montrer que si
divise
,
est premier.
Correction :
Première méthode
Il existe
tel que ![]()
donc
traduit par le théorème de Bezout que ![]()
Deuxième méthode
Si
est un diviseur de
tel que
, alors
divise
donc
divise
.
On a prouvé que
est premier.
Dans la suite, on établit la réciproque.
Question 2
Si
ou 3,
divise
. Vrai ou Faux ?
Correction : Si
,
est divisible par ![]()
Si
,
est divisible par 3.
Dans la suite, on suppose que
.
Question 3.
Montrer que si
, il existe un unique
tel que
et puis que ![]()
Correction :
Si
,
, par le théorème de Bezout, il existe
tel que
et par division euclidienne de
par
, on écrit
avec ![]()
donc
ce qui donne
.
Il est impossible que
car on aurait
qui n’est pas congru à 1.
Il est impossible que
car on aurait
donc
ce qui contredit
.
donc
divise
.
car
est un nombre premier et ![]()
car
est un nombre premier et ![]()
donc
car
est premier et on aboutit à une contradiction.
On a prouvé que
.
Il reste à prouver l’unicité
si
et
avec
et
,
et
donc
divise
, alors
car
est premier.
Question 4.
En déduire que si
est premier et
,
divise ![]()
Correction :
Pour tout
, il existe un unique
, différent de
tel que
.
On regroupe les
éléments de
en
couples
tels que
alors
![]()
et ![]()
soit ![]()
ce qui démontre la réciproque.
10. Théorème chinois
Exercice 1
Résoudre
.
Exercice 2
Soient
et
.
Soient
et
dans
tels que
.
Question 1
Si
,
et
.
Question 2
Si
vérifie
et
alors ![]()
Exercice 3
Soient
et
des éléments de
deux à deux distincts.
On note
et pour tout
,
.
Comme
et
sont premiers entre eux, soit
tel que
.
Question 1
Soient
.
vérifie
,
.
Question 2
vérifie
ssi
.
Question 3
Appliquer les résultats précédents à la résolution du système :
,
et
.
Vous devez avoir parfaitement assimilé l’ensemble des chapitres de maths au programme de Maths Sup pour réussir d’une part, à suivre les cours en Maths Spé, mais surtout pour réussir votre dernière année de prépa et évidemment les concours post-prépa. Les cours en ligne de Maths Sup vous fournissent des ressources supplémentaires pour vous aider à améliorer votre niveau. Profitez ainsi de nombreux autres cours de maths en PTSI, PCSI et MPSI :
