Chapitres Maths en MPSI, PCSI, MP2I, PTSI
Chapitres Maths en MPSI, PCSI, MP2I, PTSI
Exercices corrigés sur les équations différentielles en MPSI, MP2I, PCSI et PTSI
Résumé de cours Exercices et corrigés
Cours en ligne de Maths en Maths Sup
Plan des exercices : Equations différentielles
- Équations différentielles d’ordre 1
- Équations différentielles d’ordre 2
- Systèmes différentiels
- Équations différentielles d’ordre 1
- Équations différentielles d’ordre 1 : problèmes de raccords
- Équations différentielles d’ordre 2 : changement de fonction inconnue
- Sur les graphes des solutions d’une équation différentielle
- Équations différentielles d’ordre 2 : problèmes de raccords
- Résolution d’une équation d’ordre 3 par changement de fonction inconnue
- Équations différentielles d’ordre 2 : solutions périodiques
- Équations différentielles d’ordre 2 : solutions de limite nulle en
On cherchera dans les exercices qui suivent l’ensemble des solutions réelles. Certains de ces exercices sont incontournables pour bien réussir en classe de MPSI, de PCSI, de PTSI ou encore de MP2I. Si vous ne parvenez à les résoudre ou à comprendre tous les corrigés contactez Groupe Réussite pour des cours particuliers de maths à domicile. Un enseignant à domicile vous aidera à comprendre ce chapitre très important pour la réussite de votre maths sup.
1. Exercices équations différentielles d’ordre 1 en maths sup
Exercice 1
Résoudre sur et sur
L’équation .
Exercice 2
Exercice 3
Exercice 4
Trouver dérivable sur telle que et .
Exercice 5
Résoudre sur :
.
COURS DE MATHS
Les meilleurs professeurs particuliers
Pour progresser et réussir
Avis Google France ★★★★★ 4,9 sur 5
Correction de l’exercice 1 :
On peut remarquer que est la dérivée de et on sait qu’une primitive de sur est .
Il est alors plus simple de dire que est solution sur
ssi il existe tel que .
La solution générale sur est définie par
où
Correction de l’exercice 2 :
où est la solution générale de l’équation sans second membre.
On cherche une solution de l’équation complète sous la forme
est solution ssi
ssi
On cherche sous la forme
est solution
ssi
ssi
ssi .
On en déduit que
est une solution particulière.
L’ensemble des solutions est l’ensemble des fonctions
où .
Correction de l’exercice 3 :
La solution générale de l’équation homogène est où .
En vue d’utiliser le principe de superposition des solutions, on écrit
.
On cherche une solution de
sous la forme .
est solution ssi
.
On cherche sous la forme .
0n obtient
ce qui donne et ssi et
donc est une solution particulière.
On cherche une solution de
sous la forme .
est solution ssi
On cherche sous la forme ,
on obtient
ce qi donne et ssi et
donc est une solution particulière.
Par le principe de superposition des solutions est solution particulière
L’ensemble des solutions est l’ensemble des fonctions :
où .
Correction de l’exercice 4 :
est solution d’une équation différentielle de la forme .
La solution générale de est où .
est solution particulière évidente.
On en déduit que
avec soit soit .
On impose
Puis on traduit
ssi
ssi .
Sachant que , on obtient soit
et donc .
La solution du problème est définie par .
Correction de l’exercice 5 :
On écrit l’équation sous la forme .
Une primitive de est
donc la solution générale sur est soit où
On utilise la méthode de variation de la constante est solution sur ssi
ssi
ssi
ssi
La solution générale est définie par où .
2. Exercices corrigés équations différentielles d’ordre 2 en maths sup
Exercice 1
avec et .
Exercice 2
avec et .
Exercice 3
Résoudre .
COURS PARTICULIERS EN LIGNE
Nous avons sélectionné pour vous les meilleurs professeurs particuliers.
POUR ACCÉLÉRER MA PROGRESSION
Avis Google France ★★★★★ 4,9 sur 5
Correction de l’exercice 1 :
La solution générale de l’équation homogène est où .
On cherche une solution particulière de
sous la forme car est racine simple de .
et .
est solution ssi ssi
donc .
On cherche une solution particulière de sous la forme
est solution ssi
ssi et ssi et
soit .
La solution générale de l’équation est donnée par le principe de superposition des solutions par
où .
On détermine la fonction vérifiant les conditions initiales.
ssi
et comme
.
On résout donc le système :
ssi et .
La fonction cherchée est définie par
Correction de l’exercices 2 :
L’équation caractéristique
admet deux racines distinctes et .
La solution générale de l’équation homogène est où .
On cherche une solution particulière de de la forme où .
.
est solution ssi
ssi ssi
Puis est solution particulière de
soit : .
On en déduit que la solution générale est définie par
Traduction des conditions initiales
et
ssi et
ssi et
La fonction cherchée est définie par
Correction de l’exercice 3 :
L’équation caractéristique
admet deux racines et .
La solution générale de l’equation homogène est
où
On cherche une solution particulière
de sous la forme où .
.
est solution
ssi
ssi ssi .
Puis est solution particulière de
ce qui donne
On cherche une solution particulière de sous la forme où .
est solution ssi pour tout réel ,
ssi ssi
soit
Et est solution particulière de
.
La solution générale est définie par
où .
3. Systèmes différentiels : exercices en MPSI, MP2I, PTSI et PCSI
Exercice 1
Déterminer l’ensemble des fonctions et de la variable vérifiant sur
Correction : En utilisant ,
on peut conclure que par somme de 3 fonctions dérivables, est dérivable. Puis en dérivant :
, .
On utilise la seconde équation du système
pour obtenir :
.
De la première équation, on tire en fonction de et :
ce qui donne pour tout réel ,
.
soit .
Résolution de l’équation différentielle
L’équation a pour solution générale où .
Il est évident que est solution particulière de
est solution particulière de ssi ssi .
On en déduit qu’il existe ,
, .
En utilisant : , on obtient après calculs, pour tout réel ,
.
Il reste à étudier la réciproque.
La première équation est vérifiée, car c’est elle qui a servi à déterminer .
Il reste à vérifier la deuxième.
On calcule si
en utilisant , donc ,
en utilisant l’équation différentielle dont est solution, on a donc obtenu
la deuxième équation est vérifiée.
La réciproque est vraie.
Conclusion : les solutions du système sont définies pour tout réel par :
et
où .
Exercice 2
Déterminer l’ensemble des fonctions et de la variable vérifiant sur
Correction :
On sait qu’un système de deux équations est équivalent au système formé par et
On obtient donc le système équivalent
en posant , on résout dont l’équation caractéristique admet comme solution générale .
En posant , on résout ce qui donne où .
On termine en utilisant
et ,
ce qui donne pour tout
.
où .
4. Équations différentielles d’ordre 1, solution périodique
Soit une fonction continue sur et 1-périodique. Soit .
Il existe une unique solution de qui est 1-périodique. Vrai ou Faux ?
Correction : On résout d’abord l’équation.
est solution générale de l’équation sans second membre.
On utilise la méthode de variation de la constante est solution de l’équation
ssi
ssi
ssi .
On en déduit que la solution générale de l’équation est donnée par
où .
Recherche d’une solution 1-périodi- que :
est -périodique
ssi
ssi ,
(*)
On calcule par la relation de Chasles :
On utilise le changement de variable : dans la deuxième intégrale (), est de classe sur :
ce qui donne puisque est -périodique
La condition nécessaire et suffisante (*) s’écrit alors ,
ssi
ssi
ssi .
Conclusion : il existe une et une seule solution – périodique.
5. Équations différentielles d’ordre 1 : problèmes de raccords
Exercice 1
à résoudre sur ou .
Puis déterminer les solutions sur .
Correction : Première partie
0n résout l’équation sur ou après l’avoir écrite sous la forme .
La solution générale de est soit
On utilise la méthode de variation de la constante avec où sur et sur .
est solution sur
ssi
ssi
On utilise de primitive si
et de primitive si .
est solution sur
ssi
Donc la solution générale sur est
où
et sur : où .
Deuxième partie
Recherche d’une solution sur de .
On note si
et si .
Si ou , n’a pas de limite finie en .
Si , les limites de à gauche et à droite de sont nulles.
On pose .
Dans ce cas, pour tout , .
est alors dérivable en et .
On vérifie que , donc est encore solution de en .
Elle est solution sur .
Conclusion : L’équation admet une unique solution sur définie par .
Exercice 2
Résoudre l’équation différentielle
sur et sur .
Déterminer les solutions sur .
Correction : Résolution sur et sur .
On écrit l’équation sous la forme et on résout l’équation sur avec .
La solution générale sur de est où car admet comme primitive .
On utilise la méthode de variation de la constante.
est solution de sur
ssi
ssi
ssi .
L’ensemble des solutions de sur est l’ensemble des fonctions où .
L’ensemble des solutions de sur est l’ensemble des fonctions où
Recherche de solutions de sur .
On note
Pour tout et , admet pour limite en . On pose .
On introduit le taux d’accroissement de en :
alors .
est dérivable en et .
est encore solution de l’équation en car
L’équation admet une infinité de solutions sur .
Leurs graphes passent tous par l’origine.
⚠️ On peut remarquer que le théorème de Cauchy-Lipschitz ne s’applique pas sur car le coefficient de s’annule.
6. Équations différentielles d’ordre 2 : changement de fonction inconnue
Pour chaque question, on cherchera le domaine de dérivabilité et la dérivée.
Exercice 1
Résoudre sur l’équation en posant
Correction : 👍 Il est important de ne pas oublier de démontrer que est deux fois dérivable.
👍 On dérive en fonction de et non en fonction de pour remplacer dans l’équation différentielle.
Si est deux fois dérivable sur par produit de deux fonction 2 fois dérivable sur , l’est aussi.
On écrit ce qui permet de dériver plus facilement en fonction de .
Pour tout ,
👍 On remplace dans l’équation, en regroupant directement les termes en , ceux en et le seul terme en .
est solution sur ssi ,
ssi
ssi
ssi .
⚠️ à ne pas oublier de donner les solutions .
L’ensemble des solutions sur est l’ensemble des fonctions
où .
Exercice 2
Résoudre l’équation sur en posant
Correction : 👍 Il est important de ne pas oublier de démontrer que est deux fois dérivable.
👍 On dérive en fonction de et non en fonction de pour remplacer dans l’équation différentielle.
Si est deux fois dérivable sur , l’est aussi.
Recherche de la nouvelle équation différentielle
Si ,
.
On remplace dans l’équation différentielle en regroupant dès le début les termes en et :
est solution sur ssi pour tout
ssi .
Détermination de
La solution générale de est où .
La fonction est solution particulière de
La solution générale de est
où
⚠️ à donner les solutions .
L’ensemble des solutions de sur est l’ensemble des fonctions
où .
Exercice 3
à résoudre sur
Correction :
Si l’on pose , est dérivable et on obtient une équation linéaire du premier ordre que l’on résout sur après l’avoir écrite sous la forme et que l’on note .
Une primitive de est donc la solution générale de l’équation homogène sur est
il est évident que est solution de l’équation complète.
Donc la solution générale de est où .
On a posé , donc la fonction doit être à valeurs strictement positives.
si , est à valeurs strictement positives.
Si , est strictement décroissante sur , admet pour limite en et pour limite en . Donc est à valeurs strictement positives ssi .
On a donc prouvé que est à valeurs strictement positives ssi .
La solution générale de l’équation sur est donc
où .
⚠️ cet exercice demandait une discussion après avoir déterminé pour obtenir .
7. Sur les graphes des solutions d’une équation différentielle
On se place sur .
et soit
Question 1.
Résoudre l’équation différentielle.
Correction : On résout l’équation homogène.
admet comme primitive sur :
donc soit est la solution générale de l’équation homogène.
On utilise la méthode de variation de la constante
est solution de
ssi
ssi
ssi .
L’ensemble des solutions est l’ensemble des fonctions où .
Question 2
Déterminer l’ensemble des points des courbes représentatives des solutions à tangente horizontale.
Question 3
Déterminer l’ensemble des points des courbes représentatives où .
8. Équations différentielles d’ordre 2, problème de raccord
exercice 1
.
Correction : La solution générale de l’équation homogène est où .
Il est évident que est solution particulière sur de .
Donc la solution générale sur est
où .
Il est évident que est solution particulière sur de .
Donc la solution générale sur est
où .
Recherche d’une solution sur .
On définit
admet pour limite à gauche en et pour limite à droite en .
est prolongeable par continuité en ssi ce que l’on suppose dans la suite.
On pose alors
Si
donc
en utilisant et .
Si ,
donc .
0n en déduit que est dérivable en ssi ssi
ce que l’on suppose dans la suite.
Alors
Alors
donc
Si
donc .
Si
donc .
est deux fois dérivable en et .
On vérifie ensuite que , donc est solution sur .
Les solutions sont définies par
où .
Exercice 2
Correction : Résolution sur et .
La solution générale de l’équation homogène est .
On cherche une solution particulière sur de sous la forme
est solution sur ssi ssi .
La solution générale sur est définie par où .
On cherche une solution particulière sur de sous la forme
est solution sur ssi ssi
La solution générale sur est définie par où .
Recherche d’une solution sur .
On note
admet pour limite à gauche en et pour limite à droite en .
est prolongeable par continuité en ssi ce que l’on suppose dans la suite.
On pose alors .
Si ,
donc
en utilisant donc
.
Si ,
.
est dérivable en
ssi
ssi
ssi
et dans ce cas , ce que l’on suppose dans la suite.
Si ,
.
Si ,
.
est dérivable en ssi ssi condition déjà introduite.
Les fonctions solutions sont définies par :
si
et si ,
où .
9. Résolution d’une équation d’ordre 3 par changement de fonction inconnue
Résoudre sur
.
Correction :
On note et on résout l’équation :
que l’on écrit
admet comme primitive
donc la solution générale de l’équation homogène est
soit où .
est solution particulière évidente.
La solution générale de est où .
On résout maintenant
La solution générale de est où .
On cherche une solution particulière de sous la forme
est solution ssi pour tout réel ,
ssi ssi .
Donc .
Puis est solution particulière de
soit .
est solution évidente de .
L’ensemble des solutions est l’ensemble des fonctions
où .
10. Équations différentielles d’ordre 2, solutions périodiques
Question 1
Quels sont les réels tels que soit périodique de période ?
Question 2
On suppose que
Trouver une CNS pour que toutes les solutions réelles de
soient périodiques de même période .
COURS DE MATHS
Les meilleurs professeurs particuliers
Pour progresser et réussir
Avis Google France ★★★★★ 4,9 sur 5
11. Équations différentielles d’ordre 2, solutions de limite nulle
Question 1
Soient et , toutes les solutions de
admettent pour limite en
ssi ( et et )
ou ( et ).
Question 2
Soient et , toutes les solutions réelles de
admettent pour limite en ssi .
Soyez sûrs de vos connaissances en vous entraînant sur les divers exercices de cours en ligne de Maths pour les Maths Sup, parmi lesquels :