Chapitres Maths en MPSI, PCSI, MP2I, PTSI
Chapitres Maths en MPSI, PCSI, MP2I, PTSI
Exercices : Raisonnement et récurrence en maths sup
Résumé de cours Exercices Corrigés
Cours en ligne de maths en Maths Sup
Exercices – raisonnements et récurrence MPSI, PCSI
1. 1. Manipulation des assertions et quantificateurs
Exercice 1
Soit
une fonction de
dans
.
Traduire en termes de quantificateurs les phrases suivantes :
1/
est majorée.
2/
n’est pas minorée
3/
est bornée.
4/
n’est ni paire ni impaire
5/
ne s’annule jamais
6/
est périodique
7/
est croissante
8/
est strictement décroissante
9/
n’est pas monotone
10/
n’est pas la fonction nulle
11/
ne prend pas deux fois la même valeur
12/
atteint toutes les valeurs de
.
Exercice 2
Si
est une partie non vide de
, traduire en français les propriétés suivantes :
Question 1
.
COURS DE MATHS
Les meilleurs professeurs particuliers
Pour progresser et réussir
Avis Google France ★★★★★ 4,9 sur 5
Question 2
est une partie non vide de
vérifiant
.
Exercice 3
Que dire de
vérifiant
a) ![]()
b)
?
Exercice 4
Quelles sont les fonctions
vérifiant
a)
![]()
b)
![]()
Exercice 5
Soit
et
Traduire avec des quantificateurs
a)
sont
réels non nuls.
b)
sont
réels non tous nuls
c)
est une famille de réels contenant au moins un 0
d)
est une famille de réels contenant un seul 0.
Exercice 6
Traduire avec des quantificateurs :
Question 1
Certains réels sont strictement supérieurs à leur carré
Question 2
Étant donnés trois réels non nuls, il y en a au moins deux de même signe
Exercice 7
Soient
et
deux propriétés définies sur un ensemble
.
Les assertions
a)
et
)
b) (
) et (
)
sont-elles équivalentes ?
COURS PARTICULIERS EN LIGNE
Nous avons sélectionné pour vous les meilleurs professeurs particuliers.
POUR ACCÉLÉRER MA PROGRESSION
Avis Google France ★★★★★ 4,9 sur 5
2. Raisonnement par récurrence maths sup
Exercice 1
Montrer que si
, 3 divise
.
Exercice 2
et si
,
.
Conjecturer la valeur de
et le démontrer
Exercice 3
Soit
.
Si
est croissante de
dans
il existe
tel que
.
Exercice 4
Si
est un réel non nul tel que
, alors
.
Exercice 5
Tout entier
peut s’écrire comme somme de puissances de 2 toutes distinctes.
Exercice 6
Trouver l’erreur dans le raisonnement par récurrence suivant.
Soit si
,
» dans toute partie de
entiers, tous les éléments ont même parité. »
est vraie de façon évidente.
Soit
tel que
soit vraie.
Soit
une partie de
entiers que l’on range par ordre strictement croissant.
On note
(resp
) la partie de
formée des
plus petits (resp.
plus grands) éléments de
.
D’après l’hypothèse
, les éléments de
ont même parité ainsi que les éléments de
.
Or l’entier
numéro
est à la fois dans
et
, donc les éléments de
et de
ont la parité de
, donc tous les éléments de
ont même parité.
Par récurrence, toute partie finie non vide de
est formée d’éléments de même parité.
Exercice 7
Soit pour
,
: 5 divise ![]()
Question 1
La propriété
est héréditaire.
Question 2
est vraie pour tout
.
Exercice 8
Soit ![]()
et
.
On note si
,
:
.
Question 1
est héréditaire.
Question 2
Si
, on a prouvé par récurrence forte que
est rationnel pour tout ![]()
3. Sur la suite de Fibonacci
On considère la suite
(suite de Fibonacci) définie par
et, pour tout
.
Question 1
La suite
vérifie :
.
Question 2
La suite
vérifie :
.
Question 3
La suite
vérifie pour tout
,
.
Question 4
On note
et
.
.
4. Autres types de raisonnements
Exercice 1
Démontrer que si
est la somme de deux carrés d’entiers, alors le reste de la division euclidienne de
par 4 est toujours différent de 3.
Exercice 2
Pour tout
,
est divisible par 6
Exercice 3
Si
et
sont réels,
![]()
.
Exercice 4
Déterminer l’ensemble des fonctions
de
dans
telles que
,
.
Exercice 5
Déterminer les fonctions
telles que pour tout réel
, ![]()
Exercice 6
Déterminer toutes les fonctions
telles que,
.
Retrouvez de nombreux autres exercices et cours en ligne de Maths au programme de Maths Sup :
