Chapitres Maths en MPSI, PCSI, MP2I, PTSI
Chapitres Maths en MPSI, PCSI, MP2I, PTSI
Exercices: Sommes et produits
Résumé de cours Exercices Corrigés
Cours en ligne de Maths en Maths Sup
Exercices – sommes et produits MPSI, PCSI
1. QCM – Vrai/Faux
Les relations suivantes sont- elles vraies ? Les corriger lorsqu’elles sont fausses.
Question 1
Si , .
Question 2
Si , .
Question 3
Soit . .
Question 4
Soit . .
Question 5
Si et , .
Question 6
Soient et une famille de complexes.
.
Question 7
Soient et une suite réelle ou complexe.
.
Question 8
Soient et une suite réelle ou complexe.
.
Question 9
Soit . .
Question 10
Si ,
Question 11
Soient et , deux familles réelles ou complexes
.
Question 12
Soit ,
Question 13
Si
Question 14
Soit .
Si .
a) Si , .
b) .
Question 15
Soient et une famille réelle ou complexe.
.
Question 16
Soient et et des complexes
.
Question 17
Soient et des entiers tels que ,
Question 18
Soient et des entiers tels que , et une famille de complexes.
.
COURS DE MATHS
Les meilleurs professeurs particuliers
Pour progresser et réussir
Avis Google France ★★★★★ 4,9 sur 5
2. Des sommes et des coefficients du binôme
Exercice 1
Si , calculer
et .
Exercice 2
Appliquer la formule du triangle de Pascal pour calculer lorsque .
Exercice 3
Démontrer par récurrence que si , .
Exercice 4
Utiliser pour calculer, et .
3. Des calculs de sommes
Exercice 1
Si , .
Exercice 2
Soit .
Exercice 3
Soit .
Exercice 4
Soit . Calculer .
Exercice 5 Formule de Vandermonde
Soit . .
Exercice 6
Soit . Calculer
Exercice 7
Soit et une famille de réels telle que
,
alors
Exercice 8
Si
Exercice 9
Si , calculer
Exercice 10
Calculer si ,
.
4. Calcul de produits
Exercice 1
Si et , calculer
.
Exercice 2
Exprimer à l’aide factorielles
.
Exercice 3
Si et
.
Question 1
Exprimer en fonction de et lorsque .
Question 2
Exprimer si , à l’aide de coefficients du binôme.
Exercice 4
Si , simplifier .
5. Sommes doubles
Exercice 1
Si , calculer .
Exercice 2
Si , calculer .
Exercice 3
Si , calculer .
Exercice 4
Si , calculer
.
Exercice 5
Si et , calculer
.
COURS PARTICULIERS EN LIGNE
Nous avons sélectionné pour vous les meilleurs professeurs particuliers.
POUR ACCÉLÉRER MA PROGRESSION
Avis Google France ★★★★★ 4,9 sur 5
6. Formule d’inversion de Pascal
Question 1
Soit .
Montrer que pour tout ,
on note si et 1 si .
Question 2
Soit et et deux familles de réels ou complexes.
ssi .
Pour aller plus loin dans les révisions, découvrez de nombreux autres chapitres de Maths au programme de MPSI, PCSI et PTSI dont :