Chapitres Maths en MPSI, PCSI, MP2I, PTSI
Chapitres Maths en MPSI, PCSI, MP2I, PTSI
Cours : Trigonométrie en Maths Sup MPSI, PCSI, MP2I et PTSI
Résumé de cours Exercices et corrigés
Cours en ligne de Maths en Maths Sup
Résumé de cours et méthodes – Trigonométrie en Maths Sup
Fonctions circulaires
Plan :
1. Fonction sinus
2. Fonction cosinus
3. Fonction tangente
1. Fonction sinus
Propriétés des angles
Pour tout réel ,
Les angles remarquables
Étude de la fonction
est continue, strictement croissante sur .
la dérivée de est .
Le graphe de est symétrique par rapport à et par rapport à la droite d’équation .
2. Fonction cosinus
Propriétés des angles
Pour tout réel ,
Lien entre et
Pour tout
Les angles remarquables
Étude de la fonction
est continue, strictement décroissante sur .
la dérivée de est
Le graphe de est symétrique par rapport à et par rapport à la droite d’équation .
3. Fonction tangente
Elle est définie sur par .
Propriétés des angles
Pour tout réel ,
.
Les angles remarquables
Étude de la fonction
est continue, strictement croissante sur .
La dérivée de est .
.
.
Le graphe de est symétrique par rapport à .
Les droites d’équations où sont asymptotes à la courbe.
4. S’aider du cercle trigonométrique
On peut retrouver les valeurs liant les et des angles et , et et , en plaçant les points correspondants sur le cercle trigonométrique.
COURS DE MATHS A DOMICILE
Les meilleurs profs de maths pour
réussir sa scolarité
En ligne ou à domicile
Avis Google France ★★★★★ 4,9 sur 5
Méthodes
Plan :
1. Retrouver les formules
2. Équations de base
3. Calcul de et .
Le temps dépend de vos capacités à retenir les formules.
1. Retrouver les formules.
Il faut apprendre ces fichues formules, rien de pire à l’oral qu’un étudiant coincé devant une formule de trigonométrie, les jurys trépignent !
Devoir les retrouver c’est
a) perdre un temps précieux
b) et surtout ne pas avoir idée de transformations qui pourraient débloquer les calculs !
Ce paragraphe indique comment retrouver ces formules à partir des formules d’Euler :
et de la relation : .
1.1. Valeur de de
M1. somme
On utilise , soit
et on termine en égalant les parties réelles et imaginaires.
M2. différence
en utilisant en remplaçant par sans oublier que est paire et est impaire.
M3. Et les conséquences :
qui peuvent bien sûr s’écrire aussi
.
M4. sous réserve de définition des trois tangentes :
obtenue en faisant le quotient des formules de M1 puis en divisant numérateur et dénominateur par .
M5. en conséquence de M4
sous réserve de définition des trois tangentes :
en remplaçant par et en utilisant est une fonction impaire.
puis en posant dans la formule de M4.
Il y a des cas où il est préférable de s’affranchir de ces formules
a) Si et ,
b) ,
c) ,
.
La démonstration :
a) Si est pair, et
Si est impair, et .
De plus
b) La dérivée de peut s’écrire
la dérivée de peut s’écrire
c) à l’aide d’un dessin du cercle trigonométrique ou en remplaçant par dans les formules du b).
1.2. Linéarisation
M6 Formules au programme
La justification :
Par M1 et M2
et
Par somme et différence :
Par M1 et M2
et
et on additionne
.
M7. Formules à retrouver
et en remplaçant par ,
.
la démonstration :
On pose et ssi et
Les formules de M6
deviennent
La formule :
.
devient
.
1.3. Utilisation de
En posant , on démontre
.
la démonstration :
On utilise l’angle double et les résultats de M3
et
et M5
Puis on termine avec .
1.4. Transformation de si
Introduire la forme trigonométrique de
.
2. Équations de base
E1 avec des cosinus :
Si ,
.
E2 avec des sinus
Si ,
E3 avec des tangentes
Si ,
.
Lorsque les équations sont « compliquées », il y a moins de risque d’erreur à utiliser des égalités à ou près plutôt que les modulos.
UN PROF DE MATHS POUR EXCELLER
La pratique et la compréhension
clés de la réussite
Cours de maths en ligne ou à domicile
Avis Google France ★★★★★ 4,9 sur 5
3. Calcul de et
Il faut savoir au moins traiter le cas du calcul de ou de lorsque est un entier donné « faible ».
Le calcul dans le cas général comme il est donné ci-dessous pourrait faire l’objet d’une question de sujet de concours.
On utilise les formules de Moivre et la formule du binôme de Newton
On sépare les indices des indices , pour comparer les parties réelles et imaginaires.
avec et .
Par la formule de Moivre,
On sépare les indices avec
soit pour avec
des indices avec
soit pour où
ce qui permet de séparer la partie réelle de la partie imaginaire
avec
et
On simplifie ces écritures :
Pour prendre de l’avance ou faire face à vos difficultés, retrouvez d’autres cours en ligne de maths et cours de maths à domicile pour les PCSI, PTSI et MPSI :